第2章

类别:其他 作者:David Hume字数:34357更新时间:18/12/21 16:30:15
OftheotherQualitiesofourIdeaofSpaceandTime。 Nodiscoverycou’dhavebeenmademorehappilyfordecidingallcontroversiesconcerningideas,thanthatabovemention’d,thatimpressionsalwaystaketheprecedencyofthem,andthateveryidea,withwhichtheimaginationisfurnish’d,firstmakesitsappearanceinacorrespondentimpression。Theselatterperceptionsareallsoclearandevident,thattheyadmitofnocontroversy;tho’manyofourideasaresoobscure,that’tisalmostimpossibleevenforthemind,whichformsthem,totellexactlytheirnatureandcomposition。Letusapplythisprinciple,inordertodiscoverfartherthenatureofourideasofspaceandtime。 Uponopeningmyeyes,andturningthemtothesurroundingobjects,Iperceivemanyvisiblebodies;anduponshuttingthemagain,andconsideringthedistancebetwixtthesebodies,Iacquiretheideaofextension。Aseveryideaisderiv’dfromsomeimpression,whichisexactlysimilartoit,theimpressionssimilartothisideaofextension,musteitherbesomesensationsderiv’dfromthesight,orsomeinternalimpressionsarisingfromthesesensations。,Ourinternalimpressionsareourpassions,emotions,desiresandaversions;noneofwhich,Ibelieve,willeverbeassertedtobethemodel,fromwhichtheideaofspaceisderiv’d。Thereremainsthereforenothingbutthesenses,whichcanconveytousthisoriginalimpression。Nowwhatimpressiondooarsenseshereconveytous?Thisistheprincipalquestion,anddecideswithoutappealconcerningthenatureoftheidea。 Thetablebeforemeisalonesufficientbyitsviewtogivemetheideaofextension。Thisidea,then,isborrow’dfrom,andrepresentssomeimpression,whichthismomentappearstothesenses。Butmysensesconveytomeonlytheimpressionsofcolour’dpoints,dispos’dina,certainmanner。Iftheeyeissensibleofanythingfarther,Idesireitmaybepointedouttome。Butifitbeimpossibletoshewanythingfarther,wemayconcludewithcertainty,thattheideaofextensionisnothingbutacopyofthesecolour’dpoints,andofthemanneroftheirappearance。 Supposethatintheextendedobject,orcompositionofcolour’dpoints,fromwhichwefirstreceiv’dtheideaofextension,thepointswereofapurplecolour;itfollows,thatineveryrepetitionofthatideawewou’dnotonlyplacethepointsinthesameorderwithrespecttoeachother,butalsobestowonthemthatprecisecolour,withwhichaloneweareacquainted。Butafterwardshavingexperienceoftheothercoloursofviolet,green,red,white,black,andofallthedifferentcompositionsofthese,andfindingaresemblanceinthedispositionofcolour’dpoints,ofwhichtheyarecompos’d,weomitthepeculiaritiesofcolour,asfaraspossible,andfoundanabstractideamerelyonthatdispositionofpoints,ormannerofappearance,inwhichtheyagree。Nayevenwhentheresemblanceiscarry’dbeyondtheobjectsofonesense,andtheimpressionsoftoucharefoundtobeSimilartothoseofsightinthedispositionoftheirparts;thisdoesnothindertheabstractideafromrepresentingboth,uponaccountoftheirresemblance。Allabstractideasarereallynothingbutparticularones,consider’dinacertainlight;butbeingannexedtogeneralterms,theyareabletorepresentavastvariety,andtocomprehendobjects,which,astheyarealikeinsomeparticulars,areinothersvastlywideofeachother。’ Theideaoftime,beingderiv’dfromthesuccessionofourperceptionsofeverykind,ideasaswellasimpressions,andimpressionsofreflectionaswellasofsensationswillaffordusaninstanceofanabstractidea,whichcomprehendsastillgreatervarietythanthatofspace,andyetisrepresentedinthefancybysomeparticularindividualideaofadeterminatequantityandquality。 As’tisfromthedispositionofvisibleandtangibleobjectswereceivetheideaofspace,sofromthesuccessionofideasandimpressionsweformtheideaoftime,norisitpossiblefortimealoneevertomakeitsappearance,orbetakennoticeofbythemind。Amaninasoundsleep,orstronglyoccupy’dwithonethought,isinsensibleoftime;andaccordingashisperceptionssucceedeachotherwithgreaterorlessrapidity,thesamedurationappearslongerorshortertohisimagination。Ithasbeenremark’dbyagreatphilosopher,(7)thatourperceptionshavecertainboundsinthisparticular,whicharefix’dbytheoriginalnatureandconstitutionofthemind,andbeyondwhichnoinfluenceofexternalobjectsonthesensesiseverabletohastenorretardourthought。Ifyouwheelaboutaburningcoalwithrapidity,itwillpresenttothesensesanimageofacircleoffire;norwillthereseemtobeanyintervaloftimebetwixtitsrevolutions;meerlybecause’tisimpossibleforourperceptionstosucceedeachotherwiththesamerapidity,thatmotionmaybecommunicatedtoexternalobjects。Whereverwehavenosuccessiveperceptions,wehavenonotionoftime,eventho’therebearealsuccessionintheobjects。Fromthesephenomena,aswellasfrommanyothers,wemayconclude,thattimecannotmakeitsappearancetothemind,eitheralone,orattendedwithasteadyunchangeableobject,butisalwaysdiscoveredsomeperceivablesuccessionofchangeableobjects。 Toconfirmthiswemayaddthefollowingargument,whichtomeseemsperfectlydecisiveandconvincing。’Tisevident,thattimeordurationconsistsofdifferentparts:Forotherwisewecou’dnotconceivealongerorshorterduration。’Tisalsoevident,thatthesepartsarenotco-existent:Forthatqualityoftheco-existenceofpartsbelongstoextension,andiswhatdistinguishesitfromduration。Nowastimeiscompos’dofparts,thatarenotcoexistent:anunchangeableobject,sinceitproducesnonebutcoexistentimpressions,producesnonethatcangiveustheideaoftime;andconsequentlythatideamustbederiv’dfromasuccessionofchangeableobjects,andtimeinitsfirstappearancecanneverbesever’dfromsuchasuccession。 Havingthereforefound,thattimeinitsfirstappearancetothemindisalwaysconjoin’dwithasuccessionofchangeableobjects,andthatotherwiseitcanneverfallunderournotice,wemustnowexaminewhetheritcanbeconceiv’dwithoutourconceivinganysuccessionofobjects,andwhetheritcanaloneformadistinctideaintheimagination。 Inordertoknowwhetheranyobjects,whicharejoin’dinimpression,beinseparableinidea,weneedonlyconsider,iftheybedifferentfromeachother;inwhichcase,’tisplaintheymaybeconceiv’dapart。Everything,thatisdifferentisdistinguishable:andeverything,thatisdistinguishable,maybeseparated,accordingtothemaximsabove-explain’d。Ifonthecontrarytheybenotdifferent,theyarenotdistinguishable:andiftheybenotdistinguishable,theycannotbeseparated。Butthisispreciselythecasewithrespecttotime,compar’dwithoursuccessiveperceptions。Theideaoftimeisnotderiv’dfromaparticularimpressionmix’dupwithothers,andplainlydistinguishablefromthem;butarisesaltogetherfromthemanner,inwhichimpressionsappeartothemind,withoutmakingoneofthenumber。Fivenotesplay’donaflutegiveustheimpressionandideaoftime;tho’timebenotasixthimpression,whichpresentsitselftothehearingoranyotherofthesenses。Norisitasixthimpression,whichthemindbyreflectionfindsinitself。Thesefivesoundsmakingtheirappearanceinthisparticularmanner,excitenoemotioninthemind,norproduceanaffectionofanykind,whichbeingobserv’dbyitcangiverisetoanewidea。Forthatisnecessarytoproduceanewideaofreflection,norcanthemind,byrevolvingoverathousandtimesallitsideasofsensation,everextractfromthemanyneworiginalidea,unlessnaturehassofram’ditsfaculties,thatitfeelssomeneworiginalimpressionarisefromsuchacontemplation。Buthereitonlytakesnoticeofthemanner,inwhichthedifferentsoundsmaketheirappearance;andthatitmayafterwardsconsiderwithoutconsideringtheseparticularsounds,butmayconjoinitwithanyotherobjects。Theideasofsomeobjectsitcertainlymusthave,norisitpossibleforitwithouttheseideasevertoarriveatanyconceptionoftime;whichsinceit,appearsnotasanyprimarydistinctimpression,canplainlybenothingbutdifferentideas,orimpressions,orobjectsdispos’dinacertainmanner,thatis,succeedingeachother。 Iknowtherearesomewhopretend,thattheideaofdurationisapplicableinapropersensetoobjects,whichareperfectlyunchangeable;andthisItaketobethecommonopinionofphilosophersaswellasofthevulgar。Buttobeconvinc’dofitsfalsehoodweneedbutreflectontheforegoingconclusion,thattheideaofdurationisalwaysderiv’dfromasuccessionofchangeableobjects,andcanneverbeconvey’dtothemindbyanythingstedfastandunchangeable。Foritinevitablyfollowsfromthence,thatsincetheideaofdurationcannotbederiv’dfromsuchanobject,itcannever-inanyproprietyorexactnessbeapply’dtoit,norcananythingunchangeablebeeversaidtohaveduration。IdeasalwaysrepresenttheObjectsorimpressions,fromwhichtheyarederiv’d,andcanneverwithoutafictionrepresentorbeapply’dtoanyother。Bywhatfictionweapplytheideaoftime,eventowhatisunchangeable,andsuppose,asiscommon,thatdurationisameasureofrestaswellasofmotion,weshallconsider(8)afterwards。 Thereisanotherverydecisiveargument,whichestablishesthepresentdoctrineconcerningourideasofspaceandtime,andisfoundedonlyonthatsimpleprinciple,thatourideasofthemarecompoundedofparts,whichareindivisible。Thisargumentmaybeworththeexamining。 Everyidea,thatisdistinguishable,beingalsoseparable,letustakeoneofthosesimpleindivisibleideas,ofwhichthecompoundoneofextensionisform’d,andseparatingitfromallothers,andconsideringitapart,letusformajudgmentofitsnatureandqualities。 ’Tisplainitisnottheideaofextension。Fortheideaofextensionconsistsofparts;andthisidea,accordingtot-hesupposition,isperfectlysimpleandindivisible。Isitthereforenothing?Thatisabsolutelyimpossible。Forasthecompoundideaofextension,whichisreal,iscompos’dofsuchideas;werethesesomanynon-entities,therewou’dbearealexistencecompos’dofnon-entities;whichisabsurd。HerethereforeImustask,Whatisourideaofasimpleandindivisiblepoint?Nowonderifmyanswerappearsomewhatnew,sincethequestionitselfhasscarceeveryetbeenthoughtof。Wearewonttodisputeconcerningthenatureofmathematicalpoints,butseldomconcerningthenatureoftheirideas。 Theideaofspaceisconvey’dtothe。mindbytwosenses,thesightandtouch;nordoesanythingeverappearextended,thatisnoteithervisibleortangible。Thatcompoundimpression,whichrepresentsextension,consistsofseverallesserimpressions,thatareindivisibletotheeyeorfeeling,andmaybecall’dimpressionsofatomsorcorpusclesendow’dwithcolourandsolidity。Butthisisnotall。’Tisnotonlyrequisite,thattheseatomsshou’dbecolour’dortangible,inordertodiscoverthemselvestooursenses;’tisalsonecessaryweshou’dpreservetheideaoftheircolourortangibilityinordertocomprehendthembyourimagination。Thereisnothingbuttheideaoftheircolourortangibility,whichcanrenderthemconceivablebythemind。Upontheremovaloftheideasofthesesensiblequalities,theyareutterlyannihilatedtothethoughtorimagination。’ Nowsuchasthepartsare,suchisthewhole。Ifapointbenotconsider’dascolour’dortangible,itcanconveytousnoidea;andconsequentlytheideaofextension,whichiscompos’doftheideasofthesepoints,canneverpossiblyexist。Butiftheideaofextensionreallycanexist,asweareconsciousitdoes,itspartsmustalsoexist;andinordertothat,mustbeconsider’dascolour’dortangible。Wehavethereforenoideaofspaceorextension,butwhenweregarditasanobjecteitherofoursightorfeeling。 Thesamereasoningwillprove,thattheindivisiblemomentsoftimemustbefill’dwithsomerealobjectorexistence,whosesuccessionformstheduration,andmakesitbeconceivablebythemind。 Objectionsanswer’d。 Oursystemconcerningspaceandtimeconsistsoftwoparts,whichareintimatelyconnectedtogether。Thefirstdependsonthischainofreasoning。Thecapacityofthemindisnotinfinite;consequentlynoideaofextensionordurationconsistsofaninfinitenumberofpartsorinferiorideas,butofafinitenumber,andthesesimpleandindivisible:’Tisthereforepossibleforspaceandtimetoexistconformabletothisidea:Andifitbepossible,’tiscertaintheyactuallydoexistconformabletoit;sincetheirinfinitedivisibilityisutterlyimpossibleandcontradictory。 Theotherpartofoursystemisaconsequenceofthis。Theparts,intowhichtheideasofspaceandtimeresolvethemselves,becomeatlastindivisible;andtheseindivisibleparts,beingnothinginthemselves,areinconceivablewhennotfill’dwithsomethingrealandexistent。Theideasofspaceandtimearethereforenoseparateordistinctideas,butmerelythoseofthemannerororder,inwhichobjectsexist:Orinotherwords,’tisimpossibletoconceiveeitheravacuumandextensionwithoutmatter,oratime,whentherewasnosuccessionorchangeinanyrealexistence。Theintimateconnexionbetwixtthesepartsofoursystemisthereasonwhyweshallexaminetogethertheobjections,whichhavebeenurg’dagainstbothofthem,beginningwiththoseagainstthefinitedivisibilityofextension。 I。Thefirstoftheseobjections,whichIshalltakenoticeof,ismorepropertoprovethisconnexionanddependenceoftheonepartupontheother,thantodestroyeitherofthem。Ithasoftenbeenmaintainedintheschools,thatextensionmustbedivisible,ininfinitum,becausethesystemofmathematicalpointsisabsurd;andthatsystemisabsurd,becauseamathematicalpointisanon-entity,andconsequentlycanneverbyitsconjunctionwithothersformarealexistence。Thiswou’dbeperfectlydecisive,weretherenomediumbetwixttheinfinitedivisibilityofmatter,andthenon-entityofmathematicalpoints。Butthereisevidentlyamedium,viz。thebestowingacolourorsolidityonthesepoints;andtheabsurdityofboththeextremesisademonstrationofthetruthandrealityofthismedium。Thesystemofphysicalpoints,whichisanothermedium,istooabsurdtoneedarefutation。Arealextension,suchasaphysicalpointissuppos’dtobe,canneverexistwithoutparts,differentfromeachother;andwhereverobjectsaredifferent,theyaredistinguishableandseparablebytheimagination。 II。Thesecondobjectionisderiv’dfromthenecessitytherewou’dbeofpenetration,ifextensionconsistedofmathematicalpoints。Asimpleandindivisibleatom,thattouchesanother,mustnecessarilypenetrateit;for’tisimpossibleitcantouchitbyitsexternalparts,fromtheverysuppositionofitsperfectsimplicity,whichexcludesallparts。Itmustthereforetouchitintimately,andinitswholeessence,secundumse,tota,&;totaliter;whichistheverydefinitionofpenetration。Butpenetrationisimpossible:Mathematicalpointsareofconsequenceequallyimpossible。 Ianswerthisobjectionbysubstitutingajusterideaofpenetration。Supposetwobodiescontainingnovoidwithintheircircumference,toapproacheachother,andtouniteinsuchamannerthatthebody,whichresultsfromtheirunion,isnomoreextendedthaneitherofthem;’tisthiswemustmeanwhenwetalkofpenetration。But’tisevidentthispenetrationisnothingbuttheannihilationofoneofthesebodies,andthepreservationoftheother,withoutourbeingabletodistinguishparticularlywhichispreserv’dandwhichannihilated。Beforetheapproachwehavetheideaoftwobodies。Afteritwehavetheideaonlyofone。’Tisimpossibleforthemindtopreserveanynotionofdifferencebetwixttwobodiesofthesamenatureexistinginthesameplaceatthesametime。 Takingthenpenetrationinthissense,fortheannihilationofonebodyuponitsapproachtoanother,Iaskanyone,ifheseesanecessity,thatacolour’dortangiblepointshou’dbeannihilatedupontheapproachofanothercolour’dortangiblepoint?Onthecontrary,doeshenotevidentlyperceive,thatfromtheunionofthesepointsthereresultsanobject,whichiscompoundedanddivisible,andmaybedistinguishedintotwoparts,ofwhicheachpreservesitsexistencedistinctandseparate,notwithstandingitscontiguitytotheother?Lethimaidhisfancybyconceivingthesepointstobeofdifferentcolours,thebettertopreventtheircoalitionandconfusion。Ablueandaredpointmaysurelyliecontiguouswithoutanypenetrationorannihilation。Foriftheycannot,whatpossiblycanbecomeofthem?Whethershalltheredorthebluebeannihilated?Orifthesecoloursuniteintoone,whatnewcolourwilltheyproducebytheirunion? Whatchieflygivesrisetotheseobjections,andatthesametimerendersitsodifficulttogiveasatisfactoryanswertothem,isthenaturalinfirmityandunsteadinessbothofourimaginationandsenses,whenemploy’donsuchminuteobjects。Putaspotofinkuponpaper,andretiretosuchadistance,thatthespotbecomesaltogetherinvisible;youwillfind,thatuponyourreturnandnearerapproachthespotfirstbecomesvisiblebyshortintervals;andafterwardsbecomesalwaysvisible;andafterwardsacquiresonlyanewforceinitscolouringwithoutaugmentingitsbulk;andafterwards,whenithasencreas’dtosuchadegreeastobereallyextended,’tisstilldifficultfortheimaginationtobreakitintoitscomponentparts,becauseoftheuneasinessitfindsintheconceptionofsuchaminuteobjectasasinglepoint。Thisinfirmityaffectsmostofourreasoningsonthepresentsubject,andmakesitalmostimpossibletoanswerinanintelligiblemanner,andinproperexpressions,manyquestionswhichmayariseconcerningit。 III。Therehavebeenmanyobjectionsdrawnfromthemathematicsagainsttheindivisibilityofthepartsofextension:tho’atfirstsightthatscienceseemsratherfavourabletothepresentdoctrine;andifitbecontraryinitsdemonstrations,’tisperfectlyconformableinitsdefinitions。Mypresentbusinessthenmustbetodefendthedefinitions,andrefutethedemonstrations。 Asurfaceisdefin’dtobelengthandbreadthwithoutdepth:Alinetobelengthwithoutbreadthordepth:Apointtobewhathasneitherlength,breadthnordepth。’Tisevidentthatallthisisperfectlyunintelligibleuponanyothersuppositionthanthatofthe。compositionofextensionbyindivisiblepointsoratoms。Howelsecou’danythingexistwithoutlength,withoutbreadth,orwithoutdepth? Twodifferentanswers,Ifind,havebeenmadetothisargument;neitherofwhichisinmyopinionsatisfactory。Thefirstis,thattheobjectsofgeometry,thosesurfaces,linesandpoints,whoseproportionsandpositionsitexamines,aremereideasinthemind;Iandnotonlyneverdid,butnevercanexistinnature。Theyneverdidexist;fornoonewillpretendtodrawalineormakeasurfaceentirelyconformabletothedefinition:Theynevercanexist;forwemayproducedemonstrationsfromtheseveryideastoprove,thattheyareimpossible。 Butcananythingbeimagin’dmoreabsurdandcontradictorythanthisreasoning?Whatevercanbeconceiv’dbyaclearanddistinctideanecessarilyimpliesthepossibilityofexistence;andhewhopretendstoprovetheimpossibilityofitsexistencebyanyargumentderivedfromtheclearidea,inrealityasserts,thatwehavenoclearideaofit,becausewehaveaclearidea。’Tisinvaintosearchforacontradictioninanythingthatisdistinctlyconceiv’dbythemind。Diditimplyanycontradiction,’tisimpossibleitcou’deverbeconceiv’d。 Thereisthereforenomediumbetwixtallowingatleastthepossibilityofindivisiblepoints,anddenyingtheiridea;and’tisonthislatterprinciple,thatthesecondanswertotheforegoingargumentisfounded。Ithasbeen(9)pretended,thattho’itbeimpossibletoconceivealengthwithoutanybreadth,yetbyanabstractionwithoutaseparation,wecanconsidertheonewithoutregardingtheother;inthesamemanneraswemaythinkofthelengthofthewaybetwixttwotowns,andoverlookitsbreadth。Thelengthisinseparablefromthebreadthbothinnatureandinourminds;butthisexcludesnotapartialconsideration,andadistinctionofreason,afterthemanneraboveexplain’d。 InrefutingthisanswerIshallnotinsistontheargument,whichIhavealreadysufficientlyexplained,thatifitbeimpossibleforthemindtoarriveataminimuminitsideas,itscapacitymustbeinfinite,inordertocomprehendtheinfinitenumberofparts,ofwhichitsideaofanyextensionwou’dbecompos’d。Ishallhereendeavourtofindsomenewabsurditiesinthisreasoning。 Asurfaceterminatesasolid;alineterminatesasurface;apointterminatesaline;butIassert,thatiftheideasofapoint,lineorsurfacewerenotindivisible,’tisimpossibleweshou’deverconceivetheseterminations:Forlettheseideasbesuppos’dinfinitelydivisible;andthenletthefancyendeavourtofixitselfontheideaofthelastsurface,lineorpoint;itimmediatelyfindsthisideatobreakintoparts;anduponitsseizingthelastoftheseparts,itlosesitsholdbyanewdivision,andsoonininfinitum,withoutanypossibilityofitsarrivingataconcludingidea。Thenumberoffractionsbringitnonearerthelastdivision,thanthefirstideaitform’d。Everyparticleeludesthegraspbyanewfraction;likequicksilver,whenweendeavourtoseizeit。Butasinfacttheremustbesomething,whichterminatestheideaofeveryfinitequantity;andasthisterminatingideacannotitselfconsistofpartsorinferiorideas;otherwiseitwou’dbethelastofitsparts,whichfinish’dtheidea,andsoon;thisisaclearproof,thattheideasofsurfaces,linesandpointsadmitnotofanydivision;thoseofsurfacesindepth;oflinesinbreadthanddepth;andofpointsinanydimension。 Theschoolweresosensibleoftheforceofthisargument,thatsomeofthemmaintained,thatnaturehasmix’damongthoseparticlesofmatter,whicharedivisibleininfinitum,anumberofmathematicalpoints,inordertogiveaterminationtobodies;andotherseludedtheforceofthisreasoningbyaheapofunintelligiblecavilsanddistinctions。Boththeseadversariesequallyyieldthevictory。Amanwhohideshimself,confessesasevidentlythesuperiorityofhisenemy,asanother,whofairlydelivershisarms。 Thusitappears,thatthedefinitionsofmathematicsdestroythepretendeddemonstrations;andthatifwehavetheideaofindivisiblepoints,linesandsurfacesconformabletothedefinition,theirexistenceiscertainlypossible:butifwehavenosuchidea,’tisimpossiblewecaneverconceivetheterminationofanyfigure;withoutwhichconceptiontherecanbenogeometricaldemonstration。 ButIgofarther,andmaintain,thatnoneofthesedemonstrationscanhavesufficientweighttoestablishsuchaprinciple,asthisofinfinitedivisibility;andthatbecausewithregardtosuchminuteobjects,theyarenotproperlydemonstrations,beingbuiltonideas,whicharenotexact,andmaxims,whicharenotpreciselytrue。Whengeometrydecidesanythingconcerningtheproportionsofquantity,weoughtnottolookfortheutmostprecisionandexactness。Noneofitsproofsextendsofar。Ittakesthedimensionsandproportionsoffiguresjustly;butroughly,andwithsomeliberty。Itserrorsareneverconsiderable;norwou’diterratall,diditnotaspiretosuchanabsoluteperfection。 Ifirstaskmathematicians,whattheymeanwhentheysayonelineorsurfaceisEQUALto,orGREATERorLESSthananother?Letanyofthemgiveananswer,towhateversecthebelongs,andwhetherhemaintainsthecompositionofextensionbyindivisiblepoints,orbyquantitiesdivisibleininfinitum。Thisquestionwillembarrassbothofthem。 Therearefewornomathematicians,whodefendthehypothesisofindivisiblepoints;andyetthesehavethereadiestandjustestanswertothepresentquestion。Theyneedonlyreply,thatlinesorsurfacesareequal,whenthenumbersofpointsineachareequal;andthatastheproportionofthenumbersvaries,theproportionofthelinesandsurfacesisalsovary’d。Buttho’thisanswerbejust,aswellasobvious;yetImayaffirm,thatthisstandardofequalityisentirelyuseless,andthatitneverisfromsuchacomparisonwedetermineobjectstobeequalorunequalwithrespecttoeachother。Forasthepoints,whichenterintothecompositionofanylineorsurface,whetherperceiv’dbythesightortouch,aresominuteandsoconfoundedwitheachother,that’tisutterlyimpossibleforthemindtocomputetheirnumber,suchacomputationwillNeveraffordusastandardbywhichwemayjudgeofproportions。Noonewilleverbeabletodeterminebyanexactnumeration,thataninchhasfewerpointsthanafoot,orafootfewerthananelloranygreatermeasure:forwhichreasonweseldomorneverconsiderthisasthestandardofequalityorinequality。 Astothose,whoimagine,thatextensionisdivisibleininfinitum,’tisimpossibletheycanmakeuseofthisanswer,orfixtheequalityofanylineorsurfacebyanumerationofitscomponentparts。Forsince,accordingtotheirhypothesis,theleastaswellasgreatestfigurescontainaninfinitenumberofparts;andsinceinfinitenumbers,properlyspeaking,canneitherbeequalnorunequalwithrespecttoeachother;theequalityorinequalityofanyportionsofspacecanneverdependonanyproportioninthenumberoftheirparts。’Tistrue,itmaybesaid,thattheinequalityofanellandayardconsistsinthedifferentnumbersofthefeet,ofwhichtheyarecompos’d;andthatofafootandayardinthenumberoftheinches。Batasthatquantitywecallaninchintheoneissuppos’dequaltowhatwecallaninchintheother,andas’tisimpossibleforthemindtofindthisequalitybyproceedingininfinitumwiththesereferencestoinferiorquantities:’tisevident,thatatlastwemustfixsomestandardofequalitydifferentfromanenumerationoftheparts。 Therearesome,(10)whopretend,thatequalityisbestdefin’dbycongruity,andthatanytwofiguresareequal,whenupontheplacingofoneupontheother,alltheirpartscorrespondtoandtoucheachother。Inordertojudgeofthisdefinitionletusconsider,thatsinceequalityisarelation,itisnot,strictlyspeaking,apropertyinthefiguresthemselves,butarisesmerelyfromthecomparison,whichthemindmakesbetwixtthem。’Ifitconsists,therefore,inthisimaginaryapplicationandmutualcontactofparts,wemustatleasthaveadistinctnotionoftheseparts,andmustconceivetheircontact。Now’tisplain,thatinthisconceptionwewou’drunupthesepartstothegreatestminuteness,whichcanpossiblybeconceiv’d;sincethecontactoflargepartswou’dneverrenderthefiguresequal。Buttheminutestpartswecanconceivearemathematicalpoints;andconsequentlythisstandardofequalityisthesamewiththatderiv’dfromtheequalityofthenumberofpoints;whichwehavealreadydeterminedtobeajustbutanuselessstandard。Wemustthereforelooktosomeotherquarterforasolutionofthepresentdifficulty。 [ThefollowingparagraphisaddedfromtheappendixtoBookIII] Therearemanyphilosophers,whorefusetoassignanystandardofequality,butassert,that’tissufficienttopresenttwoobjects,thatareequal,inordertogiveusajustnotionofthisproportion。Alldefinitions,saythey,arefruitless,withouttheperceptionofsuchobjects;andwhereweperceivesuchobjects,wenolongerstandinneedofanydefinition。Tothisreasoning,Ientirelyagree。;andassert,thattheonlyusefulnotionofequality,orinequality,isderiv’dfromthewholeunitedappearanceandthecomparisonofparticularobjects。 ’Tisevident,thattheeye,orratherthemindisoftenableatoneviewtodeterminetheproportionsofbodies,andpronouncethemequalto,orgreaterorlessthaneachother,withoutexaminingorcomparingthenumberoftheirminuteparts。Suchjudgmentsarenotonlycommon,butinmanycasescertainandinfallible。Whenthemeasureofayardandthatofafootarepresented,themindcannomorequestion,thatthefirstislongerthanthesecond,thanitcandoubtofthoseprinciples,whicharethemostclearandself-evident。 Therearethereforethreeproportions,whichtheminddistinguishesinthegeneralappearanceofitsobjects,andcallsbythenamesofgreater,lessandequal。Buttho’itsdecisionsconcerningtheseproportionsbesometimesinfallible,theyarenotalwaysso;norareourjudgmentsofthiskindmoreexemptfromdoubtanderrorthanthoseonanyothersubject。Wefrequentlycorrectourfirstopinionbyareviewandreflection;andpronouncethoseobjectstobeequal,whichatfirstweesteem’dunequal;andregardanobjectasless,tho’beforeitappear’dgreaterthananother。Noristhistheonlycorrection,whichthesejudgmentsofoursensesundergo;butweoftendiscoverourerrorbyajuxtapositionoftheobjects;orwherethatisimpracticable,bytheuseofsomecommonandinvariablemeasure,whichbeingsuccessivelyapply’dtoeach,informsusoftheirdifferentproportions。Andeventhiscorrectionissusceptibleofanewcorrection。,andofdifferentdegreesofexactness,accordingtothenatureoftheinstrument,bywhichwemeasurethebodies,andthecarewhichweemployinthecomparison。’ Whenthereforethemindisaccustomedtothesejudgmentsandtheircorrections,andfindsthatthesameproportionwhichmakestwofigureshaveintheeyethatappearance,whichwecallequality,makesthemalsocorrespondtoeachother,andtoanycommonmeasure,withwhichtheyarecompar’d,weformamix’dnotionofequalityderiv’dbothfromthelooserandstrictermethodsofcomparison。Butwearenotcontentwiththis。Forassoundreasonconvincesusthattherearebodiesvastlymoreminutethanthose,whichappeartothesenses;andasafalsereasonwou’dperswadeus,thattherearebodiesinfinitelymoreminute;weclearlyperceive,thatwearenotpossess’dofanyinstrumentorartofmeasuring,whichcansecureusfromillerroranduncertainty。Wearesensible,thattheadditionorremovalofoneoftheseminuteparts,isnotdiscernibleeitherintheappearanceormeasuring;andasweimagine,thattwofigures,whichwereequalbefore,cannotbeequalafterthisremovaloraddition,wethereforesupposesomeimaginarystandardofequality,bywhichtheappearancesandmeasuringareexactlycorrected,andthefiguresreduc’dentirelytothatproportion。Thisstandardisplainlyimaginary。Forastheveryideaofequalityisthatofsuchaparticularappearancecorrectedbyjuxtapositionoracommonmeasure。thenotionofanycorrectionbeyondwhatwehaveinstrumentsandarttomake,isamerefictionofthemind,anduselessaswellasincomprehensible。Buttho’thisstandardbeonlyimaginary,thefictionhoweverisverynatural;norisanythingmoreusual,thanforthemindtoproceedafterthismannerwithanyaction,evenafterthereasonhasceas’d,whichfirstdeterminedittobegin。Thisappearsveryconspicuouslywithregardtotime;wheretho’’tisevidentwehavenoexactmethodofdeterminingtheproportionsofparts,notevensoexactasinextension,yetthevariouscorrectionsofourmeasures,andtheirdifferentdegreesofexactness,havegivenasanobscureandimplicitnotionofaperfectandentireequality。Thecaseisthesameinmanyothersubjects。Amusicianfindinghisearbecomingeverydaymoredelicate,andcorrectinghimselfbyreflectionandattention,proceedswiththesameactofthemind,evenwhenthesubjectfailshim,andentertainsanotionofacompleattierceoroctave,withoutbeingabletotellwhencehederiveshisstandard。Apainterformsthesamefictionwithregardtocolours。Amechanicwithregardtomotion。Totheonelightandshade;totheotherswiftandslowareimagin’dtobecapableofanexactcomparisonandequalitybeyondthejudgmentsofthesenses。 WemayapplythesamereasoningtoCURVEandRIGHTlines。Nothingismoreapparenttothesenses,thanthedistinctionbetwixtacurveandarightline;norarethereanyideaswemoreeasilyformthantheideasoftheseobjects。Buthowevereasilywemayformtheseideas,’tisimpossibletoproduceanydefinitionofthem,whichwillfixthepreciseboundariesbetwixtthem。Whenwedrawlinesuponpaper,oranycontinu’dsurface,thereisacertainorder,bywhichthelinesrunalongfromonepointtoanother,thattheymayproducetheentireimpressionofacurveorrightline;butthisorderisperfectlyunknown,andnothingisobserv’dbuttheunitedappearance。Thusevenuponthesystemofindivisiblepoints,wecanonlyformadistantnotionofsomeunknownstandardtotheseobjects。Uponthatofinfinitedivisibilitywecannotgoeventhislength;butarereduc’dmeerlytothegeneralappearance,astherulebywhichwedeterminelinestobeeithercurveorrightones。Buttho’wecangivenoperfectdefinitionoftheselines,norproduceanyveryexactmethodofdistinguishingtheonefromtheother;yetthishindersusnotfromcorrectingthefirstappearancebyamoreaccurateconsideration,andbyacomparisonwithsomerule,ofwhoserectitudefromrepeatedtrialswehaveagreaterassurance。And’tisfromthesecorrections,andbycarryingonthesameactionofthemind,evenwhenitsreasonfailsus,thatweformthelooseideaofaperfectstandardtothesefigures,withoutbeingabletoexplainorcomprehendit。 ’Tistrue,mathematicianspretendtheygiveanexactdefinitionofarightline,whentheysay,itistheshortestwaybetwixttwopoints。ButinthefirstplaceIobserve,thatthisismoreproperlythediscoveryofoneofthepropertiesofarightline,thanajustdeflationofit。ForIaskanyone,ifuponmentionofarightlinehethinksnotimmediatelyonsuchaparticularappearance,andif’tisnotbyaccidentonlythatheconsidersthisproperty?Arightlinecanbecomprehendedalone;butthisdefinitionisunintelligiblewithoutacomparisonwithotherlines,whichweconceivetobemoreextended。Incommonlife’tisestablishedasamaxim,thatthestraightestwayisalwaystheshortest;whichwou’dbeasabsurdastosay,theshortestwayisalwaystheshortest,ifourideaofarightlinewasnotdifferentfromthatoftheshortestwaybetwixttwopoints。 Secondly,IrepeatwhatIhavealreadyestablished,thatwehavenopreciseideaofequalityandinequality,shorterandlonger,morethanofarightlineoracurve;andconsequentlythattheonecanneveraffordusaperfectstandardfortheother。Anexactideacanneverbebuiltonsuchasarelooseandundetermined。 Theideaofaplainsurfaceisaslittlesusceptibleofaprecisestandardasthatofarightline;norhaveweanyothermeansofdistinguishingsuchasurface,thanitsgeneralappearance。’Tisinvain,thatmathematiciansrepresentaplainsurfaceasproduc’dbytheflowingofarightline。’Twillimmediatelybeobjected,thatourideaofasurfaceisasindependentofthismethodofformingasurface,asourideaofanellipseisofthatofacone;thattheideaofarightlineisnomoreprecisethanthatofaplainsurface;thatarightlinemayflowirregularly,andbythatmeansformafigurequitedifferentfromaplane;andthatthereforewemustsupposeittoflowalongtworightlines,paralleltoeachother,andonthesameplane;whichisadescription,thatexplainsathingbyitself,andreturnsinacircle。 Itappears,then,thattheideaswhicharemostessentialtogeometry,viz。thoseofequalityandinequality,ofarightlineandaplainsurface,arefarfrombeingexactanddeterminate,accordingtoourcommonmethodofconceivingthem。Notonlyweareincapableoftelling,ifthecasebeinanydegreedoubtful,whensuchparticularfiguresareequal;whensuchalineisarightone,andsuchasurfaceaplainone;butwecanformnoideaofthatproportion,orofthesefigures,whichisfirmandinvariable。Ourappealisstilltotheweakandfalliblejudgment,whichwemakefromtheappearanceoftheobjects,andcorrectbyacompassorcommonmeasure;andifwejointhesuppositionofanyfarthercorrection,’tisofsuch-a-oneasiseitheruselessorimaginary。Invainshou’dwehaverecoursetothecommontopic,andemploythesuppositionofadeity,whoseomnipotencemayenablehimtoformaperfectgeometricalfigure,anddescribearightlinewithoutanycurveorinflexion。Astheultimatestandardofthesefiguresisderiv’dfromnothingbutthesensesandimagination,’tisabsurdtotalkofanyperfectionbeyondwhatthesefacultiescanjudgeof;sincethetrueperfectionofanythingconsistsinitsconformitytoitsstandard。 Nowsincetheseideasaresolooseanduncertain,Iwou’dfainaskanymathematicianwhatinfallibleassurancehehas,notonlyofthemoreintricate,andobscurepropositionsofhisscience,butofthemostvulgarandobviousprinciples?Howcanheprovetome,forinstance,thattworightlinescannothaveonecommonsegment?Orthat’tisimpossibletodrawmorethanonerightlinebetwixtanytwopoints?Shou’dbetellme,thattheseopinionsareobviouslyabsurd,andrepugnanttoourclearideas;Iwouldanswer,thatIdonotdeny,wheretworightlinesinclineuponeachotherwithasensibleangle,but’tisabsurdtoimaginethemtohaveacommonsegment。Butsupposingthesetwolinestoapproachattherateofaninchintwentyleagues,Iperceivenoabsurdityinasserting,thatupontheircontacttheybecomeone。For,Ibeseechyou,bywhatruleorstandarddoyoujudge,whenyouassert,thattheline,inwhichIhavesuppos’dthemtoconcur,cannotmakethesamerightlinewiththosetwo,thatformsosmallananglebetwixtthem?Youmustsurelyhavesomeideaofarightline,towhichthislinedoesnotagree。Doyouthereforemeanthatittakesnotthepointsinthesameorderandbythesamerule。,asispeculiarandessentialtoarightline?Ifso,Imustinformyou,thatbesidesthatinjudgingafterthismanneryouallow,thatextensioniscompos’dofindivisiblepoints(which,perhaps,ismorethanyouintend)besidesthis,Isay,Imustinformyou,thatneitheristhisthestandardfromwhichweformtheideaofarightline;nor,ifitwere,isthereanysuchfirmnessinour-sensesorimagination,astodeterminewhensuchanorderisviolatedorpreserv’d。Theoriginalstandardofarightlineisinrealitynothingbutacertaingeneralappearance;and’tisevidentrightlinesmaybemadetoconcurwitheachother,andyetcorrespondtothisstandard,tho’correctedbyallthemeanseitherpracticableorimaginable。 [ThisparagraphisinsertedfromtheappendixtoBookIII。] Towhateversidemathematiciansturn,thisdilemmastillmeetsthem。Iftheyjudgeofequality,oranyotherproportion,bytheaccurateandexactstandard,viz。theenumerationoftheminuteindivisibleparts,theybothemployastandard,whichisuselessinpractice,andactuallyestablishtheindivisibilityofextension,whichtheyendeavourtoexplode。Oriftheyemploy,asisusual,theinaccuratestandard,deriv’dfromacomparisonofobjects,upontheirgeneralappearance,correctedbymeasuringandjuxtaposition;theirfirstprinciples,tho’certainandinfallible,aretoocoarsetoaffordanysuchsubtileinferencesastheycommonlydrawfromthem。Thefirstprinciplesarefoundedontheimaginationandsenses:Theconclusion,therefore,cannevergobeyond,muchlesscontradictthesefaculties。 Thismayopenoureyesalittle,andletussee,thatnogeometricaldemonstrationfortheinfinitedivisibilityofextensioncanhavesomuchforceaswhatwenaturallyattributetoeveryargument,whichissupportedbysuchmagnificentpretensions。Atthesametimewemaylearnthereason,whygeometryfallsofevidenceinthissinglepoint,,whileallitsotherreasoningscommandourfullestassentandapprobation。Andindeeditseemsmorerequisitetogivethereasonofthisexception,thantoshew,thatwereallymustmakesuchanexception,andregardallthemathematicalargumentsforinfinitedivisibilityasutterlysophistical。For’tisevident,thatasnoideaofquantityisinfinitelydivisible,therecannotbeimagin’damoreglaringabsurdity,thantoendeavourtoprove,thatquantityitselfadmitsofsuchadivision;andtoprovethisbymeansofideas,whicharedirectlyoppositeinthatparticular。Andasthisabsurdityisveryglaringinitself,sothereisnoargumentfoundedonit’。whichisnotattendedwithanewabsurdity,andinvolvesnotanevidentcontradiction。 Imightgiveasinstancesthoseargumentsforinfinitedivisibility,whicharederiv’dfromthepointofcontact。Iknowthereisnomathematician,whowillnotrefusetobejudg’dbythediagramshedescribesuponpaper,thesebeingloosedraughts,ashewilltellus,andservingonlytoconveywithgreaterfacilitycertainideas,whicharethetruefoundationofallourreasoning。ThisIamsatisfy’dwith,andamwillingtorestthecontroversymerelyupontheseideas。Idesirethereforeourmathematiciantoform,asaccuratelyaspossible,theideasofacircleandarightline;andIthenask,ifupontheconceptionoftheircontacthecanconceivethemastouchinginamathematicalpoint,orifhemustnecessarilyimaginethemtoconcurforsomespace。Whicheversidehechuses,herunshimselfintoequaldifficulties。Ifheaffirms,thatintracingthesefiguresinhisimagination,hecanimaginethemtotouchonlyinapoint,heallowsthepossibilityofthatidea,andconsequentlyofthething。Ifhesays,thatinhisconceptionofthecontactofthoselineshemustmakethemconcur,hetherebyacknowledgesthefallacyofgeometricaldemonstrations,whencarry’dbeyondacertaindegreeofminuteness;since’tiscertainhehassuchdemonstrationsagainsttheconcurrenceofacircleandarightline;thatis,inotherwords,becanproveanidea,viz。thatofconcurrence,tobeincompatiblewithtwootherideas,thoseofacircleandrightline;tho’atthesametimeheacknowledgestheseideastobeinseparable。 Thesamesubjectcontinued。 Ifthesecondpartofmysystembetrue,thattheideaofspaceorextensionisnothingbuttheideaofvisibleortangiblepointsdistributedinacertainorder;itfollows,thatwecanformnoideaofavacuum,orspace,wherethereisnothingvisibleortangible。’Thisgivesrisetothreeobjections,whichIshallexaminetogether,becausetheanswerIshallgivetooneisaconsequenceofthatwhichIshallmakeuseoffortheothers。 First,Itmaybesaid,thatmenhavedisputedformanyagesconcerningavacuumandaplenum,withoutbeingabletobringtheaffairtoafinaldecision;andphilosophers,evenatthisday,thinkthemselvesatlibertytotakepartoneitherside,astheirfancyleadsthem。Butwhateverfoundationtheremaybeforacontroversyconcerningthethingsthemselves,itmaybepretended,thattheverydisputeisdecisiveconcerningtheidea,andthat’tisimpossiblemencou’dsolongreasonaboutavacuum,andeitherrefuteordefendit,withouthavinganotionofwhattheyrefutedordefended。 Secondly,Ifthisargumentshou’dbecontested,therealityoratleastthepossibilityoftheideaofavacuummaybeprov’dbythefollowingreasoning。Everyideaispossible,whichisanecessaryandinfallibleconsequenceofsuchasarepossible。Nowtho’weallowtheworldtobeatpresentaplenum,wemayeasilyconceiveittobedepriv’dofmotion;andthisideawillcertainlybeallow’dpossible。Itmustalsobeallow’dpossible,toconceivetheannihilationofanypartofmatterbytheomnipotenceofthedeity,whiletheotherpartsremainatrest。Foraseveryidea,thatisdistinguishable,isseparablebytheimagination;andaseveryidea,thatisseparablebytheimagination,maybeconceiv’dtobeseparatelyexistent;’tisevident,thattheexistenceofoneparticleofmatter,nomoreimpliestheexistenceofanother,thanasquarefigureinonebodyimpliesasquarefigureineveryone。Thisbeinggranted,Inowdemandwhatresultsfromtheconcurrenceofthesetwopossibleideasofrestandannihilation,andwhatmustweconceivetofollowupontheannihilationofalltheairandsubtilematterinthechamber,supposingthewallstoremainthesame,withoutanymotionoralteration?Therearesomemetaphysicians,whoanswer,thatsincematterandextensionarethesame,theannihilationofonenecessarilyimpliesthatoftheother;andtherebeingnownodistancebetwixtthewallsofthechamber,theytoucheachother;inthesamemannerasmyhandtouchesthepaper,whichisimmediately’beforeme。Buttho’thisanswerbeverycommon,Idefythesemetaphysicianstoconceivethematteraccordingtotheirhypothesis,orimaginethefloorandroof,withalltheoppositesidesofthechamber,totoucheachother,whiletheycontinueinrest,andpreservethesameposition。Forhowcanthetwowalls,thatrunfromsouthtonorth,toucheachother,whiletheytouchtheoppositeendsoftwowalls,thatrunfromeasttowest?Andhowcanthefloorand。roofevermeet,whiletheyareseparatedbythefourwalls,thatlieinacontraryposition?Ifyouchangetheirposition,yousupposeamotion。Ifyouconceiveanythingbetwixtthem,yousupposeanewcreation。Butkeepingstrictlytothetwoideasofrestandannihilation,’tisevident,thattheidea,whichresultsfromthem,isnotthatofacontactofparts,butsomethingelse;whichisconcludedtobetheideaofavacuum。 Thethirdobjectioncarriesthematterstillfarther,andnotonlyasserts,thattheideaofavacuumisrealandpossible,butalsonecessaryandunavoidable。Thisassertionisfoundedonthemotionweobserveinbodies,which,’tismaintain’d,wou’dbeimpossibleandinconceivablewithoutavacuum,intowhichonebodymustmoveinordertomakewayforanother……Ishallnotenlargeuponthisobjection,becauseitprincipallybelongstonaturalphilosophy,whichlieswithoutourpresentsphere。 Inordertoanswertheseobjections,wemusttakethematterprettydeep,andconsiderthenatureandoriginofseveralideas,,lestwedisputewithoutunderstandingperfectlythesubjectofthecontroversy。’Tisevidenttheideaofdarknessisnopositiveidea,butmerelythenegationof。light,ormoreproperlyspeaking,ofcolour’dandvisibleobjects。Aman,whoenjoyshissight,receivesnootherperceptionfromturninghiseyesoneveryside,whenentirelydepriv’doflight,thanwhatiscommontohimwithonebornblind;and’tiscertainsuch-a-onehasnoideaeitheroflightordarkness。Theconsequenceofthisis,that’tisnotfromthemereremovalofvisibleobjectswereceivetheimpressionofextensionwithoutmatter;andthattheideaofutterdarknesscanneverbethesamewiththatofvacuum。 SupposeagainamantobeSupportedintheair,andtobesoftlyconvey’dalongbysomeinvisiblepower;’tisevident’heissensibleofnothing,andneverreceivestheideaofextension,norindeedanyidea,fromthisinvariablemotion。Evensupposinghemoveshislimbstoandfro,thiscannotconveytohimthatidea。Hefeelsinthatcaseacertainsensationorimpression,thepartsofwhicharesuccessivetoeachother,andmaygivehimtheideaoftime:Butcertainlyarenotdispos’dinsuchamanner,asisnecessarytoconveytheideaofsaceortheideaofspaceorextension。 Sincethenitappears,thatdarknessandmotion,withtheutterremovalofeverythingvisibleandtangible,cannevergiveustheideaofextensionwithoutmatter,orofavacuum;thenextquestionis,whethertheycanconveythisidea,whenmix’dwithsomethingvisibleandtangible? ’Tiscommonlyallow’dbyphilosophers,thatallbodies,whichdiscoverthemselvestotheeye,appearasifpaintedonaplainsurface,andthattheirdifferentdegreesofremotenessfromourselvesarediscoveredmorebyreasonthanbythesenses。WhenIholdupmyhandbeforeme,andspreadmyfingers,theyareseparatedasperfectlybythebluecolourofthefirmament,astheycou’dbebyanyvisibleobject,whichIcou’dplacebetwixtthem。Inorder,therefore,toknowwhetherthesightcanconveytheimpressionandideaofavacuum,wemustsuppose,thatamidstanentiredarkness,thereareluminousbodiespresentedtous,whoselightdiscoversonlythesebodiesthemselves,withoutgivingusanyimpressionofthesurroundingobjects。 Wemustformaparallelsuppositionconcerningtheobjectsofourfeeling。’Tienotpropertosupposeaperfectremovalofalltangibleobjects:wemustallowsomethingtobeperceiv’dbythefeeling;andafteranintervalandmotionofthehandorotherorganofsensation,anotherobjectofthetouchtobemetwith;anduponleavingthat,another;andsoon,asoftenasweplease。Thequestionis,whethertheseintervalsdonotaffordustheideaofextensionwithoutbody? Tobeginwiththefirstcase;’tisevident,thatwhenonlytwoluminousbodiesappeartotheeye,wecanperceive,whethertheybeconjoin’dorseparate:whethertheybeseparatedbyagreatorsmalldistance;andifthisdistancevaries,wecanperceiveitsincreaseordiminution,withthemotionofthebodies。Butasthedistanceisnotinthiscaseanythingcolour’dorvisible,itmaybethoughtthatthereishereavacuumorpureextension,notonlyintelligibletothemind,butobvioustotheverysenses。 Thisisournaturalandmostfamiliarwayofthinking;butwhichweshalllearntocorrectbyalittlereflection。Wemayobserve,thatwhentwobodiespresentthemselves,wheretherewasformerlyanentiredarkness,theonlychange,thatisdiscoverable,isintheappearanceofthesetwoobjects,andthatalltherestcontinuestobeasbefore,aperfectnegationoflight,andofeverycolour’dorvisibleobject。Thisisnotonlytrueofwhatmaybesaidtoberemotefromthesebodies,butalsooftheverydistance;whichisinterposedbetwixtthem;thatbeingnothingbutdarkness,orthenegationoflight;withoutparts,withoutcomposition,invariableandindivisible。Nowsincethisdistancecausesnoperceptiondifferentfromwhatablindmanreceivesfromhiseyes,orwhatisconvey’dtousinthedarkestnight,itmustpartakeofthesameproperties:Andasblindnessanddarknessaffordusnoideasofextension,’tisimpossiblethatthedarkandundistinguishabledistancebetwixttwobodiescaneverproducethatidea。 Thesoledifferencebetwixtanabsolutedarknessandtheappearanceoftwoormorevisibleluminousobjectsconsists,asIsaid,intheobjectsthemselves,andinthemannertheyaffectoursenses。Theangles,whichtheraysoflightflowingfromthem,formwitheachother;themotionthatisrequir’dintheeye,initspassagefromonetotheother;andthedifferentpartsoftheorgans,whichareaffectedbythem;theseproducetheonlyperceptions,fromwhichwecanjudgeofthedistance。Butastheseperceptionsareeachofthemsimpleandindivisible,theycannevergiveustheideaofextension。 Wemayillustratethisbyconsideringthesenseoffeeling,andtheimaginarydistanceorintervalinterpos’dbetwixttangibleorsolidobjects。Isupposetwocases,viz。thatofamansupportedintheair,andmovinghislimbstoandfro,withoutmeetinganythingtangible;andthatofaman,whofeelingsomethingtangible,leavesit,andafteramotion,ofwhichheissensible,perceivesanothertangibleobject;andIthenask,whereinconsiststhedifferencebetwixtthesetwocases?Noonewillmakeanyscrupletoaffirm,thatitconsistsmeerlyintheperceivingthoseobjects,andthatthesensation,whicharisesfromthemotion,isinbothcasesthesame:Andasthatsensationisnotcapableofconveyingtousanideaofextension,whenunaccompany’dwithsomeotherperception,itcannomoregiveusthatidea,whenmix’dwiththeimpressionsoftangibleobjects;sincethatmixtureproducesnoalterationuponit。 Buttho’motionanddarkness,eitheralone,orattendedwithtangibleandvisibleobjects,conveynoideaofavacuumorextensionwithoutmatter,yettheyarethecauseswhywefalslyimaginewecanformsuchanidea。Forthereisacloserelation’betwixtthatmotionanddarkness,andarealextension,orcompositionofvisibleandtangibleobjects。 First,Wemayobserve,thattwovisibleobjectsappearinginthemidstofutterdarkness,affectthesensesinthesamemanner,andformthesameanglebytherays,whichflowfromthem,andmeetintheeye,asifthedistancebetwixtthemwerefindwithvisibleobjects,thatgiveusatrueideaofextension。Thesensationofmotionislikewisethesame,whenthereisnothingtangibleinterpos’dbetwixttwobodies,aswhenwefeelacompoundedbody,whosedifferentpartsareplac’dbeyondeachother。 Secondly,Wefindbyexperience,thattwobodies,whicharesoplac’dastoaffectthesensesinthesamemannerwithtwoothers,thathaveacertainextentofvisibleobjectsinterpos’dbetwixtthem,arecapableofreceivingthesameextent,withoutanysensibleimpulseorpenetration,andwithoutanychangeonthatangle,underwhichtheyappeartothesenses。Inlikemanner,wherethereisoneobject,whichwecannotfeelafteranotherwithoutaninterval,andtheperceivingofthatsensationwecallmotioninourhandororganofsensation;experienceshewsus,that’tispossiblethesameobjectmaybefeltwiththesamesensationofmotion,alongwiththeinterpos’dimpressionofsolidandtangibleobjects,attendingthesensation。Thatis,inotherwords,aninvisibleandintangibledistancemaybeconvertedintoavisibleandtangibleone,withoutanychangeonthedistantobjects。 Thirdly,Wemayobserve,asanotherrelationbetwixtthesetwokindsofdistance,thattheyhavenearlythesameeffectsoneverynaturalphaenomenon。Forasallqualities,suchasheat,cold,light,attraction,&;c。diminishinproportiontothedistance;thereisbutlittledifferenceobserv’d,whetherthisdistancebemarledoutbycompoundedandsensibleobjects,orbeknownonlybythemanner,inwhichthedistantobjectsaffectthesenses。 Herethenarethreerelationsbetwixtthatdistance,whichconveystheideaofextension,andthatother,whichisnotfill’dwithanycolour’dorsolidobject。Thedistantobjectsaffectthesensesinthesamemanner,whetherseparatedbytheonedistanceortheother;thesecondspeciesofdistanceisfoundcapableofreceivingthefirst;andtheybothequallydiminishtheforceofeveryquality。 Theserelationsbetwixtthetwokindsofdistancewillaffordusaneasyreason,whytheonehassooftenbeentakenfortheother,andwhyweimaginewehaveanideaofextensionwithouttheideaofanyobjecteitherofthesightorfeeling。Forwemayestablishitasageneralmaximinthisscienceofhumannature,thatwhereverthereisacloserelationbetwixttwoideas,themindisveryapttomistakethem,andinallitsdiscoursesandreasoningstousetheonefortheother。Thisphaenomenonoccursonsomanyoccasions,andisofsuchconsequence,thatIcannotforbearstoppingamomenttoexamineitscauses。Ishallonlypremise,thatwemustdistinguishexactlybetwixtthephaenomenonitself,andthecauses,whichIshallassignforit;andmustnotimaginefromanyuncertaintyinthelatter,thattheformerisalsouncertain。Thephaenomenonmaybereal,tho’myexplicationbechimerical。Thefalshoodoftheoneisnoconsequenceofthatoftheother;tho’atthesametimewemayobserve,that’tisverynaturalforustodrawsuchaconsequence;whichisanevidentinstanceofthatveryprinciple,whichIendeavourtoexplain。 WhenIreceiv’dtherelationsofresemblance,contiguityandcausation,asprinciplesofunionamongideas,withoutexaminingintotheircauses,’twasmoreinprosecutionofmyfirstmaxim,thatwemustintheendrestcontentedwithexperience,thanforwantofsomethingspeciousandplausible,whichImighthavedisplay’donthatsubject。’Twou’dhavebeeneasytohavemadeanimaginarydissectionofthebrain,andhaveshewn,whyuponourconceptionofanyidea,theanimalspiritsrunintoallthecontiguoustraces,androuzeuptheotherideas,thatarerelatedtoit。Buttho’Ihaveneglectedanyadvantage,whichImighthavedrawnfromthistopicinexplainingtherelationsofideas,IamafraidImustherehaverecoursetoit,inordertoaccountforthemistakesthatarisefromtheserelations。Ishallthereforeobserve,thatasthemindisendow’dwithapowerofexcitinganyideaitpleases;wheneveritdispatchesthespiritsintothatregionofthebrain,inwhichtheideaisplac’d;thesespiritsalwaysexcitetheidea,whentheyrunpreciselyintothepropertraces,andrummagethatcell,whichbelongstotheidea。Butastheirmotionisseldomdirect,andnaturallyturnsalittletotheonesideortheother;forthisreasontheanimalspirits,fallingintothecontiguoustraces,presentotherrelatedideasinlieuofthat,whichtheminddesir’datfirsttosurvey。Thischangewearenotalwayssensibleof;butcontinuingstillthesametrainofthought,makeuseoftherelatedidea,whichispresentedtous,andemployitinourreasoning,asifitwerethesamewithwhatwedemanded。Thisisthecauseofmanymistakesandsophismsinphilosophy;aswillnaturallybeimagin’d,andasitwou’dbeeasytoshow,iftherewasoccasion。 Ofthethreerelationsabove-mention’dthatofresemblanceisthemostfertilesourceoferror;andindeedtherearefewmistakesinreasoning,whichdonotborrowlargelyfromthatorigin。Resemblingideasarenotonlyrelatedtogether,buttheactionsofthemind,whichweemployinconsideringthem,aresolittledifferent,thatwearenotabletodistinguishthem。Thislastcircumstanceisofgreatconsequence,andwemayingeneralobserve,thatwherevertheactionsofthemindinforminganytwoideasarethesameorresembling,weareveryapttoconfoundtheseideas,andtaketheonefortheother。Ofthisweshallseemanyinstancesintheprogressofthistreatise。Buttho’resemblancebetherelation,whichmostreadilyproducesamistakeinideas,yettheothersofcausationandcontiguitymayalsoconcurinthesameinfluence。Wemightproducethefiguresofpoetsandorators,assufficientproofsofthis,wereitasusual,asitisreasonable,inmetaphysicalsubjectstodrawourargumentsfromthatquarter。Butlestmetaphysiciansshou’desteemthisbelowtheirdignity,Ishallborrowaprooffromanobservation,whichmaybemadeonmostoftheirowndiscourses,viz。that’tisusualformentousewordsforideas,andtotalkinsteadofthinkingintheirreasonings。Weusewordsforideas,becausetheyarecommonlysocloselyconnectedthatthemindeasilymistakesthem。Andthislikewiseisthereason,whywesubstitutetheideaofadistance,whichisnotconsideredeitherasvisibleortangible,intheroomofextension,whichisnothingbutacompositionofvisibleortangiblepointsdispos’dinacertainorder。Incausingthismistakethereconcurboththerelationsofcausationandresemblance。Asthefirstspeciesofdistanceisfoundtobeconvertibleintothesecond,’tisinthisrespectakindofcause;andthesimilarityoftheirmannerofaffectingthesenses,anddiminishingeveryquality,formstherelationofresemblance。 Afterthischainofreasoningandexplicationofmyprinciples,Iamnowprepar’dtoansweralltheobjectionsthathavebeenoffer’d,whetherderiv’dfrommetaphysicsormechanics。Thefrequentdisputesconcerningavacuum,orextensionwithoutmatterprovenottherealityoftheidea,uponwhichthedisputeturns;therebeingnothingmorecommon,thantoseemendeceivethemselvesinthisparticular;especiallywhenbymeansofanycloserelation,thereisanotherideapresented,whichmaybetheoccasionoftheirmistake。 Wemaymakealmostthesameanswertothesecondobjection,deriv’dfromtheconjunctionoftheideasofrestandannihilation。Wheneverythingisannihilatedinthechamber,andthewallscontinueimmoveable,thechambermustbeconceiv’dmuchinthesamemannerasatpresent,whentheairthatfillsit,isnotanobjectofthesenses。Thisannihilationleavestotheeye,thatfictitiousdistance,whichisdiscoveredbythedifferentpartsoftheorgan,thatareaffected,andbythedegreesoflightandshade;-andtothefeeling,thatwhichconsistsinasensationofmotioninthehand,orothermemberofthebody。Invainshou’dwe。searchanyfarther。Onwhicheversideweturnthissubject,weshallfindthatthesearetheonlyimpressionssuchanobjectcanproduceafterthesuppos’dannihilation;andithasalreadybeenremark’d,thatimpressionscangiverisetonoideas,buttosuchasresemblethem。 Sinceabodyinterposedbetwixttwoothersmaybesuppos’dtobeannihilated,withoutproducinganychangeuponsuchaslieoneachhandofit,’tiseasilyconceiv’d,howitmaybecreatedanew,andyetproduceaslittlealteration。Nowthemotionofabodyhasmuchthesameeffectasitscreation。Thedistantbodiesarenomoreaffectedintheonecase,thanintheother。Thissufficestosatisfytheimagination,andprovesthereisnorepugnanceinsuchamotion。Afterwardsexperiencecomesinplaytopersuadeusthattwobodies,situatedinthemannerabove-describ’d,havereallysuchacapacityofreceivingbodybetwixtthem,andthatthereisnoobstacletotheconversionoftheinvisibleandintangibledistanceintoonethatisvisibleandtangible。Howevernaturalthatconversionmayseem,wecannotbesureitispracticable,beforewehavehadexperienceofit。 ThusIseemtohaveanswer’dthethreeobjectionsabove-mention’d;tho’atthesametimeIamsensible,thatfewwillbesatisfy’dwiththeseanswers,butwillimmediatelyproposenewobjectionsanddifficulties。’Twillprobablybesaid,thatmyreasoningmakesnothingtothematterinhandsandthatIexplainonlythemannerinwhichobjectsaffectthesenses,withoutendeavouringtoaccountfortheirrealnatureandoperations。Tho’therebenothingvisibleortangibleinterposedbetwixttwobodies,yetwefindbyexperience,thatthebodiesmaybeplac’dinthesamemanner,withregardtotheeye,andrequirethesamemotionofthehandinpassingfromonetotheother,asifdividedbysomethingvisibleandtangible。Thisinvisibleandintangibledistanceisalsofoundbyexperiencetocontainacapacityofreceivingbody,orofbecomingvisibleandtangible。Hereisthewholeofmysystem;andinnopartofithaveIendeavour’dtoexplainthecause,whichseparatesbodiesafterthismanner,andgivesthemacapacityofreceivingothersbetwixtthem,withoutanyimpulseorpenetration。 Ianswerthisobjection,bypleadingguilty,andbyconfessingthatmyintentionneverwastopenetrateintothenatureofbodies,orexplainthesecretcausesoftheiroperations。Forbesidesthatthisbelongsnottomypresentpurpose,Iamafraid,thatsuchanenterpriseisbeyondthereachofhumanunderstanding,andthatwecanneverpretendtoknowbodyotherwisethanbythoseexternalproperties,whichdiscoverthemselvestothesenses。Astothosewhoattemptanythingfarther,Icannotapproveoftheirambition,tillIsee,insomeoneinstanceatleast,thattheyhavemetwithsuccess。ButatpresentIcontentmyselfwithknowingperfectlythemannerinwhichobjectsaffectmysenses,andtheirconnectionswitheachother,asfarasexperienceinformsmeofthem。Thissufficesfortheconductoflife;andthisalsosufficesformyphilosophy,whichpretendsonlytoexplainthenatureandcausesofourperceptions,orimpressionsandideas。(11) Ishallconcludethissubjectofextensionwithaparadox,whichwilleasilybeexplain’dfromtheforegoingreasoning。Thisparadoxis,thatifyouarepleas’dtogivetothein-visibleandintangibledistance,orinotherwords,tothecapacityofbecomingavisibleandtangibledistance,thenameofavacuum,extensionandmatterarethesame,andyetthereisavacuum。Ifyouwillnotgiveitthatname,motionispossibleinaplenum,withoutanyimpulseininfinitum,withoutreturninginacircle,andwithoutpenetration。Buthoweverwemayexpressourselves,wemustalwaysconfess,thatwehavenoideaofanyrealextensionwithoutfillingitwithsensibleobjects,andconceivingitspartsasvisibleortangible。 Astothedoctrine,thattimeisnothingbutthemanner,inwhichsomerealobjectsexist;wemayobserve,that’tisliabletothesameobjectionsasthesimilardoctrinewithregardtoextension。Ifitbeasufficientproof,thatwehavetheideaofavacuum,becausewedisputeandreasonconcerningit;wemustforthesamereasonhavetheideaoftimewithoutanychangeableexistence;sincethereisnosubjectofdisputemorefrequentandcommon。’Butthatwereallyhavenosuchidea,iscertain。Forwhenceshou’ditbederiv’d?Doesitarisefromanimpressionofsensationorofreflection?Pointitoutdistinctlytous,thatwemayknowitsnatureandqualities。Butifyoucannotpointoutanysuchimpression,youmaybecertainyouaremistaken,whenyouimagineyouhaveanysuchidea。 Buttho’itbeimpossibletoshewtheimpression,fromwhichtheideaoftimewithoutachangeableexistenceisderiv’d;yetwecaneasilypointoutthoseappearances,whichmakeusfancywehavethatidea。Forwemayobserve,thatthereisacontinualsuccessionofperceptionsinourmind;sothattheideaoftimebeingforeverpresentwithus;whenweconsiderastedfastobjectatfive-a-clock,andregardthesameatsix;weareapttoapplytoitthatideainthesamemannerasifeverymomentweredistinguish’dbyadifferentposition,oranalterationoftheobject。The:firstandsecondappearancesoftheobject,beingcompar’dwiththesuccessionofourperceptions,seemequallyremov’dasiftheobjecthadreallychang’d。Towhichwemayadd,whatexperienceshewsus,thattheobjectwassusceptibleofsuchanumberofchangesbetwixttheseappearances;asalsothattheunchangeableorratherfictitiousdurationhasthesameeffectuponeveryquality,byencreasingordiminishingit,asthatsuccession,whichisobvioustothesenses。Fromthesethreerelationsweareapttoconfoundourideas,andimaginewecanformtheideaofatimeandduration,withoutanychangeorsuccession。 OftheIdeaofExistence,andofExternalExistence。 Itmaynotbeamiss,beforeweleavethissubject,toexplaintheideasofexistenceandofexternalexistence;whichhavetheirdifficulties,aswellastheideasofspaceandtime。Bythismeansweshallbethebetterprepar’dfortheexaminationofknowledgeandprobability,whenweunderstandperfectlyallthoseparticularideas,whichmayenterintoourreasoning。 Thereisnoimpressionnorideaofanykind,ofwhichwehaveanyconsciousnessormemory,thatisnotconceiv’dasexistent;and’tisevident,thatfromthisconsciousnessthemostperfectideaandassuranceofbeingisderiv’d。Fromhencewemayformadilemma,themostclearandconclusivethatcanbeimagin’d,viz。thatsinceweneverrememberanyideaorimpressionwithoutattributingexistencetoit,theideaofexistencemusteitherbederiv’dfromadistinctimpression,conjoin’dwitheveryperceptionorobjectofourthought,ormustbetheverysamewiththeideaoftheperceptionorobject。 Asthisdilemmaisanevidentconsequenceoftheprinciple,thateveryideaarisesfromasimilarimpression,soourdecisionbetwixtthepropositionsofthedilemmaisnomoredoubtful。gofarfromtherebeinganydistinctimpression,attendingeveryimpressionandeveryidea,thatIdonotthinkthereareanytwodistinctimpressions,whichareinseparablyconjoin’d。Tho’certainsensationsmayatonetimebeunited,wequicklyfindtheyadmitofaseparation,andmaybepresentedapart。Andthus,tho’everyimpressionandideawerememberbeconsideredasexistent,theideaofexistenceisnotderiv’dfromanyparticularimpression。 Theideaofexistence,then,istheverysamewiththeideaofwhatweconceivetobeexistent。Toreflectonanythingsimply,andtoreflectonitasexistent,arenothingdifferentfromeachother。Thatidea,whenconjoin’dwiththeideaofanyobject,makesnoadditiontoit。Whateverweconceive,weconceivetobeexistent。Anyideawepleasetoformistheideaofabeing;andtheideaofabeingisanyideawepleasetoform。’ Whoeveropposesthis,mustnecessarilypointoutthatdistinctimpression,fromwhichtheideaofentityisderiv’d,andmustprove,thatthisimpressionisinseparablefromeveryperceptionwebelievetobeexistent。Thiswemaywithouthesitationconcludetobeimpossible。 Ourforegoing(12)reasoningconcerningthedistinctionofideaswithoutanyrealdifferencewillnothereserveusinanystead。Thatkindofdistinctionisfoundedonthedifferentresemblances,whichthesamesimpleideamayhavetoseveraldifferentideas。Butnoobjectcanbepresentedresemblingsomeobjectwithrespecttoitsexistence,anddifferentfromothersinthesameparticular;sinceeveryobject,thatispresented,mustnecessarilybeexistent。 Alikereasoningwillaccountfortheideaofexternalexistence。Wemayobserve,that’tisuniversallyallow’dbyphilosophers,andisbesidesprettyobviousofitself,thatnothingiseverreallypresentwiththemindbutitsperceptionsorimpressionsandideas,andthatexternalobjectsbecomeknowntousonlybythoseperceptionstheyoccasion。Tohate,tolove,tothink,tofeel,tosee;allthisisnothingbuttoperceive。 Nowsincenothingiseverpresenttothemindbutperceptions,andsinceallideasarederiv’dfromsomethingantecedentlypresenttothemind;itfollows,that’tisimpossibleforussomuchastoconceiveorformanideaofanythingspecificallydifferent。fromideasandimpressions。Letusfixourattentionoutofourselvesasmuchaspossible:Letuschaseourimaginationtotheheavens,ortotheutmostlimitsoftheuniverse;weneverreallyadvanceastepbeyondourselves,norcanconceiveanykindofexistence,butthoseperceptions,whichhaveappear’dinthatnarrowcompass。Thisistheuniverseoftheimagination,norhaveweanyideabutwhatisthereproduc’d。 Thefarthestwecangotowardsaconceptionofexternalobjects,whensuppos’dspecificallydifferentfromourperceptions,istoformarelativeideaofthem,withoutpretendingtocomprehendtherelatedobjects。Generallyspeakingwedonotsupposethemspecificallydifferent;butonlyattributetothemdifferentrelations,connectionsanddurations。Butofthismorefullyhereafter。(13) OFKNOWLEDGEANDPROBABILITY。 OfKnowledge。 Thereareseven(14)differentkindsofphilosophicalrelation,viz。resemblance,identity,relationsoftimeandplace,proportioninquantityornumber,degreesinanyquality,contrarietyandcausation。Theserelationsmaybedividedintotwoclasses;intosuchasdependentirelyontheideas,whichwecomparetogether,andsuchasmaybechang’dwithoutanychangeintheideas。’Tisfromtheideaofatriangle,thatwediscovertherelationofequality,whichitsthreeanglesbeartotworightones;andthisrelationisinvariable,aslongasouridearemainsthesame。Onthecontrary,therelationsofcontiguityanddistancebetwixttwoobjectsmaybechang’dmerelybyanalterationoftheirplace,withoutanychangeontheobjectsthemselvesorontheirideas;andtheplacedependsonahundreddifferentaccidents,whichcannotbeforeseenbythemind。’Tisthesamecasewithidentityandcausation。Twoobjects,tho’perfectlyresemblingeachother,andevenappearinginthesameplaceatdifferenttimes,maybenumericallydifferent:Andasthepower,bywhichoneobjectproducesanother,isneverdiscoverablemerelyfromtheiridea,’tisevidentcauseandeffectarerelations,ofwhichwereceiveinformationfromexperience,andnotfromanyabstractreasoningorreflection。Thereisnosinglephaenomenon,eventhemostsimple,whichcanbeaccountedforfromthequalitiesoftheobjects,astheyappeartous;orwhichwecou’dforeseewithoutthehelpofourmemoryandexperience。 Itappears,therefore,thatofthesesevenphilosophicalrelations,thereremainonlyfour,whichdependingsolelyuponideas,canbetheobjectsofknowledgesaidcertainty。Thesefourareresemblance,contrariety,degreesinquality,andproportionsinquantityornumber。Threeoftheserelationsarediscoverableatfirstsight,andfallmoreproperlyundertheprovinceofintuitionthandemonstration。Whenanyobjectsresembleeachother,theresemblancewillatfirststriketheeve,orratherthemind;andseldomrequiresasecondexamination。Thecaseisthesamewithcontrariety,andwiththedegreesofanyquality。Noonecanoncedoubtbutexistenceandnon-existencedestroyeachother,andareperfectlyincompatibleandcontrary。Andtho’itbeimpossibletojudgeexactlyofthedegreesofanyquality,suchascolour,taste,heat,cold,whenthedifferencebetwixtthemisverysmall:yet’tiseasytodecide,thatanyofthemissuperiororinferiortoanother,whentheirdifferenceisconsiderable。Andthisdecisionwealwayspronounceatfirstsight,withoutanyenquiryorreasoning。 Wemightproceed,afterthesamemanner,infixingtheproportionsofquantityornumber,andmightatoneviewobserveasuperiorityorinferioritybetwixtanynumbers,orfigures;especiallywherethedifferenceisverygreatandremarkable。Astoequalityoranyexactproportion,wecanonlyguessatitfromasingleconsideration;exceptinveryshortnumbers,orverylimitedportionsofextension;whicharecomprehendedinaninstant,andwhereweperceiveanimpossibilityoffallingintoanyconsiderableerror。Inallothercaseswemustsettletheproportionswithsomeliberty,orproceedinamoreartificialmanner。 IhavealreadyIobserv’d’,thatgeometry,ortheart,bywhichwefixtheproportionsoffigures;tho’itmuchexcelsbothinuniversalityandexactness,theloosejudgmentsofthesensesandimagination;yetneverattainsaperfectprecisionandexactness。It’sfirstprinciplesarestilldrawnfromthegeneralappearanceoftheobjects;andthatappearancecanneveraffordusanysecurity,whenweexamine,theprodigiousminutenessofwhichnatureissusceptible。Ourideasseemtogiveaperfectassurance,thatnotworightlinescanhaveacommonsegment;butifweconsidertheseideas,weshallfind,thattheyalwayssupposeasensibleinclinationofthetwolines,andthatwheretheangletheyformisextremelysmall,wehavenostandardofaI@rightlinesopreciseastoassureusofthetruthofthisproposition。’Tisthesamecasewithmostoftheprimarydecisionsofthemathematics。 Thereremain,therefore,algebraandarithmeticastheonlysciences,inwhichwecancarryonachainofreasoningtoanydegreeofintricacy,andyetpreserveaperfectexactnessandcertainty。Wearepossestofaprecisestandard,bywhichwecanjudgeoftheequalityandproportionofnumbers;andaccordingastheycorrespondornottothatstandard,wedeterminetheirrelations,withoutanypossibilityoferror。’Whentwonumbersaresocombin’d,asthattheonehasalwaysanuniteansweringtoeveryuniteoftheother,wepronouncethemequal;and’tisforwantofsuchastandardofequalityinextension,thatgeometrycanscarcebeesteem’daperfectandinfalliblescience。 Buthereitmaynotbeamisstoobviateadifficulty,whichmayarisefrommyasserting,thattho’geometryfallsshortofthatperfectprecisionandcertainty,whicharepeculiartoarithmeticandalgebra,yetitexcelstheimperfectjudgmentsofoursensesandimagination。ThereasonwhyIimputeanydefecttogeometry,is,becauseitsoriginalandfundamentalprinciplesarederiv’dmerelyfromappearances;anditmayperhapsbeimagin’d,thatthisdefectmustalwaysattendit,andkeepitfromeverreachingagreaterexactnessinthecomparisonofobjectsorideas,thanwhatoureyeorimaginationaloneisabletoattain。Iownthatthisdefectsofarattendsit,astokeepitfromeveraspiringtoafullcertainty:Butsincethesefundamentalprinciplesdependontheeasiestandleastdeceitfulappearances,theybestowontheirconsequencesadegreeofexactness,ofwhichtheseconsequencesaresinglyincapable。’Tisimpossiblefortheeyetodeterminetheanglesofachiliagontobeequalto1996rightangles,ormakeanyconjecture,thatapproachesthisproportion;butwhenitdetermines,thatrightlinescannotconcur;thatwecannotdrawmorethanonerightlinebetweentwogivenpoints;it’smistakescanneverbeofanyconsequence。Andthisisthenatureanduseofgeometry,torunusuptosuchappearances,as,byreasonoftheirsimplicity,cannotleadusintoanyconsiderableerror。 Ishallheretakeoccasiontoproposeasecondobservationconcerningourdemonstrativereasonings,whichissuggestedbythesamesubjectofthemathematics。’Tisusualwithmathematicians,topretend,thatthoseideas,whicharetheirobjects,areofsorefin’dandspiritualanature,thattheyfallnotundertheconceptionofthefancy,butmustbecomprehendedbyapureandintellectualview,ofwhichthesuperiorfacultiesofthesoularealonecapable。Thesamenotionrunsthro’mostpartsofphilosophy,andisprincipallymadeuseoftoexplainoarabstractideas,andtoshewhowwecanformanideaofatriangle,forinstance,whichshallneitherbeanisocelesnorscalenum,norbeconfin’dtoanyparticularlengthandproportionofsides。’Tiseasytosee,whyphilosophersaresofondofthisnotionofsomespiritualandrefin’dperceptions;sincebythatmeanstheycovermanyoftheirabsurdities,andmayrefusetosubmittothedecisionsofclearideas,byappealingtosuchasareobscureanduncertain。Buttodestroythisartifice,weneedbutreflectonthatprinciplesooftinsistedon,thatallourideasarecopy’dfromourimpressions。Forfromthencewemayimmediatelyconclude,thatsinceallimpressionsareclearandprecise,theideas,whicharecopy’dfromthem,mustbeofthesamenature,andcannever,butfromourfault,containanythingsodarkandintricate。Anideaisbyitsverynatureweakerandfainterthananimpression;butbeingineveryotherrespectthesame,cannotimplyanyverygreatmystery。’Ifitsweaknessrenderitobscure,’tisourbusinesstoremedythatdefect,asmuchaspossible,bykeepingtheideasteadyandprecise;andtillwehavedoneso,’tisinvaintopretendtoreasoningandphilosophy。