第3章

类别:其他 作者:George Berkeley字数:16545更新时间:19/01/02 10:45:06
127。Ithavingbeenshewnthattherearenoabstractideasoffigure,andthatitisimpossibleforusbyanyprecisionofthoughttoframeanideaofextensionseparatefromallothervisibleandtangiblequalitieswhichshallbecommonbothtosightandtouch:thequestionnowremainingis,whethertheparticularextensions,figures,andmotionsperceivedbysightbeofthesamekindwiththeparticularextensions,figures,andmotionsperceivedbytouch?InanswertowhichIshallventuretolaydownthefollowingproposition:Theextension,figures,andmotionsperceivedbysightarespecificallydistinctfromtheideasoftouchcalledbythesamenames,noristhereanysuchthingasoneideaorkindofideacommontobothsenses。Thispropositionmaywithoutmuchdifficultybecollectedfromwhathathbeensaidinseveralplacesofthisessay。 Butbecauseitseemssoremotefrom,andcontraryto,thereceivednotionsandsettledopinionofmankind,Ishallattempttodemonstrateitmoreparticularlyandatlargebythefollowingarguments。 128。WhenuponperceptionofanideaIrangeitunderthisorthatsort,itisbecauseitisperceivedafterthesamemanner,orbecauseithasalikenessorconformitywith,oraffectsmeinthesamewayas,theideasofthesortIrankitunder。Inshort,itmustnotbeentirelynew,buthavesomethinginitoldandalreadyperceivedbyme。Itmust,Isay,havesomuchatleastincommonwiththeideasIhavebeforeknownandnamedastomakemegiveitthesamenamewiththem。Butithasbeen,ifImistakenot,clearlymadeoutthatamanbornblindwouldnotatfirstreceptionofhissightthinkthethingshesawwereofthesamenaturewiththeobjectsoftouch,orhadanythingincommonwiththem;butthattheywereanewsetofideas,perceivedinanewmanner,andentirelydifferentfromallhehadeverperceivedbefore:sothathewouldnotcallthembythesamename,norreputethemtobeofthesamesortwithanythinghehadhithertoknown。 129。Secondly,lightandcoloursareallowedbyalltoconstituteasonorspeciesentirelydifferentfromtheideasoftouch:norwillanyman,Ipresume,saytheycanmakethemselvesperceivedbythatsense:butthereisnootherimmediateobjectofsightbesideslightandcolours。 Itisthereforeadirectconsequencethatthereisnoideacommontobothsenses。 130。Itisaprevailingopinion,evenamongstthosewhohavethoughtandwritmostaccuratelyconcerningourideasandthewayswherebytheyenterintotheunderstanding,thatsomethingmoreisperceivedbysightthanbarelylightandcolourswiththeirvariations。Mr。Locketermethsight,’Themostcomprehensiveofalloursenses,conveyingtoourmindstheideasoflightandcolours,whicharepeculiaronlytothatsense; andalsothefardifferentideasofspace,figure,andmotion。EssayonHumanUnderstand。B。ii。C。9。S。9。Spaceordistance,wehaveshewn,isnototherwisetheobjectofsightthanofhearing。vid。sect。 46。Andasforfigureandextension,Ileaveittoanyonethatshallcalmlyattendtohisownclearanddistinctideastodecidewhetherhehadanyideaintromittedimmediatelyandproperlybysightsaveonlylightandcolours:orwhetheritDepossibleforhimtoframeinhismindadistinctabstractideaofvisibleextensionorfigureexclusiveofallcolour:andontheotherhand,whetherhecanconceivecolourwithoutvisibleextension? Formyownpart,ImustconfessIamnotabletoattainsogreatanicetyofabstraction:inastrictsense,Iseenothingbutlightandcolours,withtheirseveralshadesandvariations。HewhobesidethesedothalsoperceivebysightideasfardifferentanddistinctfromthemhaththatfacultyinadegreemoreperfectandcomprehensivethanIcanpretendto。 Itmustbeownedthatbythemediationoflightandcoloursotherfardifferentideasaresuggestedtomymind:butsotheyarebyhearing,whichbesidesoundswhicharepeculiartothatsense,dothbytheirmediationsuggestnotonlyspace,figure,andmotion,butalsoallotherideaswhatsoeverthatcanbesignifiedbywords。 131。Thirdly,itis,Ithink,anaxiomuniversallyreceivedthatquantitiesofthesamekindmaybeaddedtogetherandmakeoneentiresum。 Mathematiciansaddlinestogether:buttheydonotaddalinetoasolid,orconceiveitasmakingonesumwithasurface:thesethreekindsofquantitybeingthoughtincapableofanysuchmutualaddition,andconsequentlyofbeingcomparedtogetherintheseveralwaysofproportion,arebythenesteemedentirelydisparateandheterogeneous。Nowletanyonetryinhisthoughtstoaddavisiblelineorsurfacetoatangiblelineorsurface,soastoconceivethemmakingonecontinuedsumorwhole。Hethatcandothismaythinkthemhomogeneous:buthethatcannot,mustbytheforegoingaxiomthinkthemheterogeneous。AblueandaredlineIcanconceiveaddedtogetherintoonesumandmakingonecontinuedline:buttomakeinmythoughtsonecontinuedlineofavisibleandtangiblelineaddedtogetheris,Ifind,ataskfarmoredifficult,andeveninsurmountable:andIleaveittothereflexionandexperienceofeveryparticularpersontodetermineforhimself。 132。AfartherconfirmationofourtenetmaybedrawnfromthesolutionofMr。Molyneux’sproblem,publishedbyMr。LockeinhisEssay:whichIshallsetdownasittherelies,togetherwithMr。Locke’sopinionofit,’\"Supposeamanbornblind,andnowadult,andtaughtbyhistouchtodistinguishbetweenacubeandasphereofthesamemetal,andnighly[sic]ofthesamebigness,soastotell,whenhefeltoneandt’other,whichisthecubeandwhichthesphere。Supposethenthecubeandsphereplacedonatable,andtheblindmantobemadetosee:quaere,whetherbyhissight,beforehetouchedthem,hecouldnowdistinguishandtellwhichistheglobe,whichthecube?\"Towhichtheacuteandjudiciousproposeranswers:\"Not。Forthoughhehasobtainedtheexperienceofhowaglobe,howacube,affectshistouch,yethehasnotyetattainedtheexperiencethatwhataffectshistouchsoorsomustaffecthissightsoorso:orthataprotuberantangleinthecubethatpressedhishandunequallyshallappeartohiseyeasitdothinthecube。\"Iagreewiththisthinkinggentleman,whomIamproudtocallmyfriend,inhisanswertothishisproblem;andamofopinionthattheblindmanatfirstsightwouldnotbeablewithcertaintytosaywhichwastheglobe,whichthecube,whilstheonlysawthem。’(EssayonHumanUnderstanding,B。ii。C。9。S。8。) 133。Now,ifasquaresurfaceperceivedbytouchbeofthesamesortwithasquaresurfaceperceivedbysight,itiscertaintheblindmanherementionedmightknowasquaresurfaceassoonashesawit:itisnomorebutintroducingintohismindbyanewinletanideahehasbeenalreadywellacquaintedwith。Since,therefore,heissupposedtohaveknownbyhistouchthatacubeisabodyterminatedbysquaresurfaces,andthatasphereisnotterminatedbysquaresurfaces:uponthesuppositionthatavisibleandtangiblesquaredifferonlyinnumeroitfollowsthathemightknow,bytheunerringmarkofthesquaresurfaces,whichwasthecube,andwhichnot,whileheonlysawthem。Wemustthereforealloweitherthatvisibleextensionandfiguresarespecificallydistinctfromtangibleextensionandfigures,orelsethatthesolutionofthisproblemgivenbythosetwothoughtfulandingeniousmeniswrong。 134。MuchmoremightbelaidtogetherinproofofthepropositionI haveadvanced:butwhathasbeensaidis,ifImistakenot,sufficienttoconvinceanyonethatshallyieldareasonableattention:andasforthosethatwillnotbeatthepainsofalittlethought,nomultiplicationofwordswilleversufficetomakethemunderstandthetruth,orrightlyconceivemymeaning。 135。Icannotletgotheabove—mentionedproblemwithoutsomereflexiononit。Ithathbeenevidentthatamanblindfromhisbirthwouldnot,atfirstsight,denominateanythinghesawbythenameshehadbeenusedtoappropriatetoideasoftouch,vid。sect。106。Cube,sphere,tablearewordshehasknownappliedtothingsperceivablebytouch,buttothingsperfectlyintangibleheneverknewthemapplied。Thosewordsintheirwontedapplicationalwaysmarkedouttohismindbodiesorsolidthingswhichwereperceivedbytheresistancetheygave:butthereisnosolidity,noresistanceorprotrusion,perceivedbysight。Inshort,theideasofsightareallnewperceptions,towhichtherebenonamesannexedinhismind:hecannotthereforeunderstandwhatissaidtohimconcerningthem:andtoaskofthetwobodieshesawplacedonthetable,whichwasthesphere,whichthecube?weretohimaquestiondownrightbanteringandunintelligible;nothingheseesbeingabletosuggesttohisthoughtstheideaofbody,distance,oringeneralofanythinghehadalreadyknown。 136。Itisamistaketothinkthesamethingaffectsbothsightandtouch。Ifthesameangleorsquarewhichistheobjectoftouchbealsotheobjectofvision,whatshouldhindertheblindmanatfirstsightfromknowingit?Forthoughthemannerwhereinitaffectsthesightbedifferentfromthatwhereinitaffectedhistouch,yet,therebeingbesidehismannerorcircumstance,whichisnewandunknown,theangleorfigure,whichisoldandknown,hecannotchoosebutdiscernit。 137。Visiblefigureandextensionhavingbeendemonstratedtobeofanatureentirelydifferentandheterogeneousfromtangiblefigureandextension,itremainsthatweinquireconcerning。Nowthatvisiblemotionisnotofthesamesortwithtangiblemotionseemstoneednofartherproof,itbeinganevidentcorollaryfromwhatwehaveshewnconcerningthedifferencethereisbetweenvisibleandtangibleextension:butforamorefullandexpressproofhereofweneedonlyobservethatonewhohadnotyetexperiencedvisionwouldnotatfirstsightknowmotion。Whenceitclearlyfollowsthatmotionperceivablebysightisofasortdistinctfrommotionperceivablebytouch。TheantecedentIprovethus:bytouchhecouldnotperceiveanymotionbutwhatwasupordown,totherightorleft,nearerorfartherfromhim;besidestheseandtheirseveralvarietiesorcomplications,itisimpossibleheshouldhaveanyideaofmotion。Hewouldnotthereforethinkanythingtobemotion,orgivethenamemotiontoanyideawhichhecouldnotrangeundersomeorotherofthoseparticularkindsthereof。 Butfromsect。95itisplainthatbythemereactofvisionhecouldnotknowmotionupwardsordownwards,totherightorleft,orinanyotherpossibledirection。FromwhichIconcludehewouldnotknowmotionatallatfirstsight。Asfortheideaofmotioninabstract,Ishallnotwastepaperaboutit,butleaveittomyreadertomakethebesthecanofit。 Tomeitisperfectlyunintelligible。 138。Theconsiderationofmotionmayfurnishanewfieldforinquiry: butsincethemannerwhereinthemindapprehendsbysightthemotionoftangibleobjects,withthevariousdegreesthereof,maybeeasilycollectedfromwhathathbeensaidconcerningthemannerwhereinthatsensedothsuggesttheirvariousdistances,magnitudes,andsituations,Ishallnotenlargeanyfartheronthissubject,butproceedtoconsiderwhatmaybealleged,withgreatestappearanceofreason,againstthepropositionwehaveshewntobetrue。Forwherethereissomuchprejudicetobeencountered,abareandnakeddemonstrationofthetruthwillscarcesuffice。Wemustalsosatisfythescruplesthatmenmayraiseinfavouroftheirpreconceivednotions,shewwhencethemistakearises,howitcametospread,andcarefullydiscloseandrootoutthosefalsepersuasionsthatanearlyprejudicemighthaveimplantedinthemind。 139。First,therefore,itwillbedemandedhowvisibleextensionandfigurescometobecalledbythesamenamewithtangibleextensionandfigures,iftheyarenotofthesamekindwiththem?Itmustbesomethingmorethanhumouroraccidentthatcouldoccasionacustomsoconstantanduniversalasthis,whichhasobtainedinallagesandnationsoftheworld,andamongstallranksofmen,thelearnedaswellastheilliterate。 140。TowhichIanswer,wecannomoreargueavisibleandtangiblesquaretobeofthesamespeciesfromtheirbeingcalledbythesamename,thanwecanthatatangiblesquareandthemonosyllableconsistingofsixletterswherebyitismarkedareofthesamespeciesbecausetheyarebothcalledbythesamename。Itiscustomarytocallwrittenwordsandthethingstheysignifybythesamename:forwordsnotbeingregardedintheirownnature,orotherwisethanastheyaremarksofthings,ithadbeensuperfluous,andbesidethedesignoflanguage,tohavegiventhemnamesdistinctfromthoseofthethingsmarkedbythem。Thesamereasonholdsherealso。Visiblefiguresarethemarksoftangiblefigures,andfromsect。59itisplainthatinthemselvestheyarelittleregarded,oruponanyotherscorethanfortheirconnexionwithtangiblefigures,whichbynaturetheyareordainedtosignify。Andbecausethislanguageofnaturedothnotvaryindifferentagesornations,henceitisthatinalltimesandplacesvisiblefiguresarecalledbythesamenamesastherespectivetangiblefiguressuggestedbythem,andnotbecausetheyarealikeorofthesamesortwiththem。 141。But,sayyou,surelyatangiblesquareislikertoavisiblesquarethantoavisiblecircle:ithasfouranglesandasmanysides:soalsohasthevisiblesquare:butthevisiblecirclehasnosuchthing,beingboundedbyoneuniformcurvewithoutrightlinesorangles,whichmakesitunfittorepresentthetangiblesquarebutveryfittorepresentthetangiblecircle。Whenceitclearlyfollowsthatvisiblefiguresarepatternsof,orofthesamespecieswith,therespectivetangiblefiguresrepresentedbythem:thattheyarelikeuntothem,andoftheirownnaturefittedtorepresentthem,asbeingofthesamesort:andthattheyareinnorespectarbitrarysigns,aswords。 142。Ianswer,itmustbeacknowledgedthevisiblesquareisfitterthanthevisiblecircletorepresentthetangiblesquare,butthenitisnotbecauseitisliker,ormoreofaspecieswithit,butbecausethevisiblesquarecontainsinitseveraldistinctparts,wherebytomarktheseveraldistinctcorrespondingpartsofatangiblesquare,whereasthevisiblecircledothnot。Thesquareperceivedbytouchhathfourdistinct,equalsides,soalsohathitfourdistinctequalangles。Itisthereforenecessarythatthevisiblefigurewhichshallbemostpropertomarkitcontainfourdistinctequalpartscorrespondingtothefoursidesofthetangiblesquare,aslikewisefourotherdistinctandequalpartswherebytodenotethefourequalanglesofthetangiblesquare。Andaccordinglyweseethevisiblefigurescontaininthemdistinctvisibleparts,answeringtothedistincttangiblepartsofthefiguressignifiedorsuggestedbythem。 143。Butitwillnothencefollowthatanyvisiblefigureislikeunto,orofthesamespecieswith,itscorrespondingtangiblefigure,unlessitbealsoshewnthatnotonlythenumberbutalsothekindofthepartsbethesameinboth。Toillustratethis,Iobservethatvisiblefiguresrepresenttangiblefiguresmuchafterthesamemannerthatwrittenwordsdosounds。Now,inthisrespectwordsarenotarbitrary,itnotbeingindifferentwhatwrittenwordstandsforanysound:butitisrequisitethateachwordcontaininitsomanydistinctcharactersastherearevariationsinthesounditstandsfor。Thusthesingleletteraispropertomarkonesimpleuniformsound;andthewordadulteryisaccommodatedtorepresentthesoundannexedtoit,intheformationwhereoftherebeingeightdifferentcollisionsormodificationsoftheairbytheorgansofspeech,eachofwhichproducesadifferenceofsound,itwasfitthewordrepresentingitshouldconsistofasmanydistinctcharacters,therebytomarkeachparticulardifferenceorpartofthewholesound。Andyetnobody,Ipresume,willsaythesinglelettera,orthewordadultery,arelikeunto,orofthesamespecieswith,therespectivesoundsbythemrepresented。Itisindeedarbitrarythat,ingeneral,lettersofanylanguagerepresentsoundsatall:butwhenthatisonceagreed,itisnotarbitrarywhatcombinationoflettersshallrepresentthisorthatparticularsound。Ileavethiswiththereadertopursue,andapplyitinhisownthoughts。 144。Itmustbeconfessedthatwearenotsoapttoconfoundothersignswiththethingssignified,ortothinkthemofthesamespecies,aswearevisibleandtangibleideas。Butalittleconsiderationwillshewushowthismaybewithoutoursupposingthemofalikenature。Thesesignsareconstantanduniversal,theirconnexionwithtangibleideashasbeenlearntatourfirstentranceintotheworld;andeversince,almosteverymomentofourlives,ithasbeenoccurringtoourthoughts,andfasteningandstrikingdeeperonourminds。Whenweobservethatsignsarevariable,andofhumaninstitution;whenweremembertherewasatimetheywerenotconnectedinourmindswiththosethingstheynowsoreadilysuggest;butthattheirsignificationwaslearnedbytheslowstepsofexperience:thispreservesusfromconfoundingthem。Butwhenwefindthesamesignssuggestthesamethingsallovertheworld;whenweknowtheyarenotofhumaninstitution,andcannotrememberthatweeverlearnedtheirsignification,butthinkthatatfirstsighttheywouldhavesuggestedtousthesamethingstheydonow:allthispersuadesustheyareofthesamespeciesasthethingsrespectivelyrepresentedbythem,andthatitisbyanaturalresemblancetheysuggestthemtoourminds。 145。Addtothisthatwheneverwemakeanicesurveyofanyobject,successivelydirectingtheopticaxistoeachpointthereof,therearecertainlinesandfiguresdescribedbythemotionoftheheadoreye,whichbeingintruthperceivedbyfeeling,doneverthelesssomixthemselves,asitwere,withtheideasofsight,thatwecanscarcethinkbuttheyappertaintothatsense。Again,theideasofsightenterintothemindseveralatonce,moredistinctandunmingledthanisusualintheothersensesbesidethetouch。Sounds,forexample,perceivedatthesameinstant,areapttocoalesce,ifImaysosay,intoonesound:butwecanperceiveatthesametimegreatvarietyofvisibleobjects,veryseparateanddistinctfromeachother。Nowtangibleextensionbeingmadeupofseveraldistinctcoexistentparts,wemayhencegatheranotherreasonthatmaydisposeustoimaginealikenessorananalogybetweentheimmediateobjectsofsightandtouch。Butnothing,certainly,dothmorecontributetoblendandconfoundthemtogetherthanthestrictandcloseconnexiontheyhavewitheachother。 Wecannotopenoureyesbuttheideasofdistance,bodies,andtangiblefiguresaresuggestedbythem。Soswiftandsuddenandunperceivedisthetransitionfromvisibletotangibleideasthatwecanscarceforbearthinkingthemequallytheimmediateobjectofvision。 146。Theprejudicewhichisgroundedonthese,andwhateverothercausesmaybeassignedthereof,stickssofastthatitisimpossiblewithoutobstinatestrivingandlabourofthemindtogetentirelyclearofit。Butthenthereluctancywefindinrejectinganyopinioncanbenoargumentofitstruthtowhoeverconsiderswhathasbeenalreadyshewnwithregardtotheprejudicesweentertainconcerningthedistance,magnitude,andsituationofobjects; prejudicessofamiliartoourminds,soconfirmedandinveterate,astheywillhardlygivewaytotheclearestdemonstration。 147。Uponthewhole,IthinkwemayfairlyconcludethattheproperobjectsofvisionconstituteanuniversallanguageoftheAuthorofNature,wherebyweareinstructedhowtoregulateouractionsinordertoattainthosethingsthatarenecessarytothepreservationandwell—beingofourbodies,asalsotoavoidwhatevermaybehurtfulanddestructiveofthem。 Itisbytheirinformationthatweareprincipallyguidedinallthetransactionsandconcernsoflife。Andthemannerwhereintheysignifyandmarkuntoustheobjectswhichareatadistanceisthesamewiththatoflanguagesandsignsofhumanappointment,whichdonotsuggestthethingssignifiedbyanylikenessoridentityofnature,butonlybyanhabitualconnexionthatexperiencehasmadeustoobservebetweenthem。 148。Supposeonewhohadalwayscontinuedblindbetoldbyhisguidethatafterhehasadvancedsomanystepsheshallcometothebrinkofaprecipice,orbestoppedbyawall;mustnotthistohimseemveryadmirableandsurprizing?Hecannotconceivehowitispossibleformortalstoframesuchpredictionsasthese,whichtohimwouldseemasstrangeandunaccountableasprophesydothtoothers。Eventheywhoareblessedwiththevisivefacultymay(thoughfamiliaritymakeitlessobserved)findthereinsufficientcauseofadmiration。Thewonderfulartandcontrivancewherewithitisadjustedtothoseendsandpurposesforwhichitwasapparentlydesigned,thevastextent,number,andvarietyofobjectsthatareatoncewithsomucheaseandquicknessandpleasuresuggestedbyit:alltheseaffordsubjectformuchandpleasingspeculation,andmay,ifanything,giveussomeglimmeringanalogouspræ;notionofthingswhichareplacedbeyondthecertaindiscoveryandcomprehensionofourpresentstate。 149。IdonotdesigntotroublemyselfwithdrawingcorollariesfromthedoctrineIhavehithertolaiddown。Ifitbearsthetestothersmay,sofarastheyshallthinkconvenient,employtheirthoughtsinextendingitfarther,andapplyingittowhateverpurposesitmaybesubservientto:only,Icannotforbearmakingsomeinquiryconcerningtheobjectofgeometry,whichthesubjectwehavebeenupondothnaturallyleadoneto。 Wehaveshewnthereisnosuchideaasthatofextensioninabstract,andthattherearetwokindsofsensibleextensionandfigureswhichareentirelydistinctandheterogeneousfromeachother。Now,itisnaturaltoinquirewhichoftheseistheobjectofgeometry。 150。Somethingstherearewhichatfirstsightinclineonetothinkgeometryconversantaboutvisibleextension。Theconstantuseoftheeyes,bothinthepracticalandspeculativepartsofthatscience,dothverymuchinduceusthereto。Itwould,withoutdoubt,seemoddtoamathematiciantogoabouttoconvincehimthediagramshesawuponpaperwerenotthefigures,oreventhelikenessofthefigures,whichmakethesubjectofthedemonstration。Thecontrarybeingheldanunquestionabletruth,notonlybymathematicians,butalsobythosewhoapplythemselvesmoreparticularlytothestudyoflogic;Imean,whoconsiderthenatureofscience,certainty,anddemonstration:itbeingbythemassignedasonereasonoftheextraordinaryclearnessandevidenceofgeometrythatinthissciencethereasoningsarefreefromthoseinconvenienceswhichattendtheuseofarbitrarysigns,theveryideasthemselvesbeingcopiedoutandexposedtoviewuponpaper。 But,bythebye,howwellthisagreeswithwhattheylikewiseassertofabstractideasbeingtheobjectofgeometricaldemonstrationIleavetobeconsidered。 151。Tocometoaresolutioninthispointweneedonlyobservewhathathbeensaidinsect。59,60,61,whereitisshewnthatvisibleextensionsinthemselvesarelittleregarded,andhavenosettleddeterminablegreatness,andthatmenmeasurealtogether,bytheapplicationoftangibleextensiontotangibleextension。Allwhichmakesitevidentthatvisibleextensionandfiguresarenottheobjectofgeometry。 152。Itisthereforeplainthatvisiblefigureareofthesameuseingeometrythatwordsare:andtheonemayaswellbeaccountedtheobjectofthatscienceastheother,neitherofthembeingotherwiseconcernedthereinthanastheyrepresentorsuggesttothemindtheparticulartangiblefiguresconnectedwiththem。Thereisindeedthisdifferencebetweenthesignificationoftangiblefiguresbyvisiblefigures,andofideasbywords: thatwhereasthelatterisvariableanduncertain,dependingaltogetheronthearbitraryappointmentofmen,theformerisfixedandimmutablythesameinalltimesandplaces。Avisiblesquare,forinstance,suggeststothemindthesametangiblefigureinEuropethatitdothinAmerica。 HenceitisthatthevoiceoftheAuthorof’Naturewhichspeakstooureyes,isnotliabletothatmisinterpretationandambiguitythatlanguagesofhumancontrivanceareunavoidablysubjectto。 153。Thoughwhathasbeensaidmaysufficetoshewwhatoughttobedeterminedwithrelationtotheobjectofgeometry,Ishallnevertheless,forthefullerillustrationthereof,considerthecaseofanintelligence,orunbodiedspirit,whichissupposedtoseeperfectlywell,i。e。tohaveaclearperceptionoftheproperandimmediateobjectsofsight,buttohavenosenseoftouch。WhethertherebeanysuchbeinginNatureornoisbesidemypurposetoinquire。Itsufficeththatthesuppositioncontainsnocontradictioninit。Letusnowexaminewhatproficiencysuchaonemaybeabletomakeingeometry。Whichspeculationwillleadusmoreclearlytoseewhethertheideasofsightcanpossiblybetheobjectofthatscience。 154。First,then,itiscertaintheaforesaidintelligencecouldhavenoideaofasolid,orquantityofthreedimensions,whichfollowethfromitsnothavinganyideaofdistance。Weindeedarepronetothinkthatwehavebysighttheideasofspaceandsolids,whicharisethfromourimaginingthatwedo,strictlyspeaking,seedistanceandsomepartsofanobjectatagreaterdistancethanothers;whichhathbeendemonstratedtobetheeffectoftheexperiencewehavehad,whatideasoftouchareconnectedwithsuchandsuchideasattendingvision:buttheintelligenceherespokenofissupposedtohavenoexperienceoftouch。Hewouldnot,therefore,judgeaswedo,norhaveanyideaofdistance,outness,orprofundity,norconsequentlyofspaceorbody,eitherimmediatelyorbysuggestion。 Whenceitisplainhecanhavenonotionofthosepartsofgeometrywhichrelatetothemensurationofsolidsandtheirconvexorconcavesurfaces,andcontemplatethepropertiesoflinesgeneratedbythesectionofasolid。 Theconceivingofanypartwhereofisbeyondthereachofhisfaculties。 155。Farther,hecannotcomprehendthemannerwhereingeometersdescribearightlineorcircle;theruleandcompasswiththeirusebeingthingsofwhichitisimpossibleheshouldhaveanynotion:norisitaneasiermatterforhimtoconceivetheplacingofoneplaneorangleonanother,inordertoprovetheirequality:sincethatsupposethsomeideaofdistanceorexternalspace。Allwhichmakesitevidentourpureintelligencecouldneverattaintoknowsomuchasthefirstelementsofplanegeometry。Andperhapsuponaniceinquiryitwillbefoundhecannotevenhaveanideaofplanefiguresanymorethanhecanofsolids;sincesomeideaofdistanceisnecessarytoformtheideaofageometricalplane,aswillappeartowhoevershallreflectalittleonit。 156。Allthatisproperlyperceivedbythevisivefacultyamountstonomorethancolours,withtheirvariationsanddifferentproportionsoflightandshade。Buttheperpetualmutabilityandfleetingnessofthoseimmediateobjectsofsightrenderthemincapableofbeingmanagedafterthemannerofgeometricalfigures;norisitinanydegreeusefulthattheyshould。Itistruetherearediversofthemperceivedatonce,andmoreofsomeandlessofothers:butaccuratelytocomputetheirmagnitudeandassignprecisedeterminateproportionsbetweenthingssovariableandinconstant,ifwesupposeitpossibletobedone,mustyetbeaverytriflingandinsignificantlabour。 157。Imustconfessmenaretemptedtothinkthatflatorplanefiguresareimmediateobjectsofsight,thoughtheyacknowledgesolidsarenot。 Andthisopinionisgroundedonwhatisobservedinpainting,wherein(itseems)theideasimmediatelyimprintedonthemindareonlyofplanesvariouslycoloured,whichbyasuddenactofthejudgmentarechangedintosolids。 Butwithalittleattentionweshallfindtheplanesherementionedastheimmediateobjectsofsightarenotvisiblebuttangibleplanes。Forwhenwesaythatpicturesareplanes,wemeantherebythattheyappeartothetouchsmoothanduniform。Butthenthissmoothnessanduniformity,or,inotherwords,thisplanenessofthepicture,isnotperceivedimmediatelybyvision:foritappearethtotheeyevariousandmultiform。 158。Fromallwhichwemayconcludethatplanesarenomoretheimmediateobjectofsightthansolids。Whatwestrictlyseearenotsolids,noryetplanesvariouslycoloured:theyareonlydiversityofcolours。Andsomeofthesesuggesttothemindsolids,andotherplanefigures,justastheyhavebeenexperiencedtobeconnectedwiththeoneortheother:sothatweseeplanesinthesamewaythatweseesolids,bothbeingequallysuggestedbytheimmediateobjectsofsight,whichaccordinglyarethemselvesdenominatedplanesandsolids。Butthoughtheyarecalledbythesamenameswiththethingsmarkedbythem,theyareneverthelessofanatureentirelydifferent,ashathbeendemonstrated。 159。Whathathbeensaidis,ifImistakenot,sufficienttodecidethequestionweproposedtoexamine,concerningtheabilityofapurespirit,suchaswehavedescribed,toknowgeometry。Itis,indeed,noeasymatterforustoenterpreciselyintothethoughtsofsuchanintelligence,becausewecannotwithoutgreatpainscleverlyseparateanddisentangleinourthoughtstheproperobjectsofsightfromthoseoftouchwhichareconnectedwiththem。This,indeed,inacompletedegreeseemsscarcepossibletobeperformed:whichwillnotseemstrangetousifweconsiderhowharditisforanyonetohearthewordsofhisnativelanguagepronouncedinhisearswithoutunderstandingthem。Thoughheendeavourtodisunitethemeaningfromthesound,itwillneverthelessintrudeintohisthoughts,andheshallfinditextremedifficult,ifnotimpossible,toputhimselfexactlyinthepostureofaforeignerthatneverlearnedthelanguage,soastobeaffectedbarelywiththesoundsthemselves,andnotperceivethesignificationannexedtothem。Bythistime,Isuppose,itisclearthatneitherabstractnorvisibleextensionmakestheobjectofgeometry; thenotdiscerningofwhichmayperhapshavecreatedsomedifficultyanduselesslabourinmathematics。Appendix[7] Thecensureswhich,Iaminformed,havebeenmadeontheforegoingessayinclinedmetothinkIhadnotbeenclearandexpressenoughinsomepoints,andtopreventbeingmisunderstoodforthefuture,IwaswillingtomakeanynecessaryalterationsoradditionsinwhatIhadwritten。Butthatwasimpracticable,thepresenteditionhavingbeenalmostfinishedbeforeIreceivedthisinformation。WhereforeIthinkitpropertoconsiderinthisplacetheprincipalobjectionsthatarecometomynotice。 Inthefirstplaceit’sobjectedthatinthebeginningoftheessayIargueeitheragainstalluseoflinesandanglesinoptics,andthenwhatIsayisfalse;oragainstthosewritersonlywhowillhaveitthatwecanperceivebysensetheopticaxes,angles,etc。,andthenit’sinsignificant,thisbeinganabsurditywhichnooneeverheld。TowhichIanswerthatIargueonlyagainstthosewhoareofopinionthatweperceivethedistanceofobjectsbylinesandanglesor,astheytermit,byakindofinnategeometry。Andtoshewthatthisisnotfightingwithmyownshadow,IshallheresetdownapassagefromthecelebratedDescartes。 Distantiampraetereadiscimus,permutuamquandamconspirationemoculorum。UtenimcaecusnosterduobacillatenensAEetCE,dequorumlongitudineincercus,solumqueintervallummanuumAetC,cummagnitudineangulorumACE,etCAEexploratumhabens,inde,utexgeometriaquadamomnibusinnata,scirepotestubisitpunctumE。SicquumnostrioculiRSTetrstambo,vertunturadX,magnitudolineaeSs,etangulorumXSsetXsS,certosnosreduntubisitpunctumX。Etidemoperaalterutriuspossumusindagare,locoillummovendo,utsiversusXillumsemperdirigentes,primosistamusinpunctoS,etstatimpostinpunctos,hocsufficietutmagnitudolineaeSs,etduorumangulorumXSsetXsS nostraeimaginationisimuloccurrant,etdistantiampunctiXnosedoceant; idqueperactionemmentis,quaelicetsimplexjudiciumessevideatur,ratiocinationemtamenquandaminvolutamhabet,similemilli,quageometraeperduasstationesdiversas,locainaccessadimetiuntur。[8]Imightamasstogethercitationsfromseveralauthorstothesamepurpose,butthisbeingsoclearinthepoint,andfromanauthorofsogreatnote,Ishallnottroublethereaderwithanymore。WhatIhavesaidonthisheadwasnotforthesakeoffindingfaultwithothermen,butbecauseIjudgeditnecessarytodemonstrateinthefirstplacethatweneitherseedistanceimmediately,noryetperceiveitbythemediationofanythingthathath(aslinesandangles)anecessaryconnexionwithit。Foronthedemonstrationofthispointthewholetheorydepends。 Secondly,itisobjectedthattheexplicationIgiveoftheappearanceofthehorizontalmoon(whichmayalsobeappliedtothesun)isthesamethatGassendushadgivenbefore。Ianswer,thereisindeedmentionmadeofthegrossnessoftheatmosphereinboth,butthenthemethodswhereinitisappliedtosolvethe:phenomenonarewidelydifferent,aswillbeevidenttowhoever,shallcomparewhatIhavesaidonthissubjectwiththefollowingwordsofGassendus。Heincdicipossevidetur:solemhumilemoculospeaatumideoappareremajorem,quamdumaltiusegreditur,quiadumvicinusesthorizontiprolixaestsenesvaporum,atqueadeocorpusculorumquaesolisradiositaretundunt,utoculusminusconniveat,etpupillaquasiumbrefactalongemagisamplificetur,quamdumsolemultumelatorarivaporesintercipiuntur,solqueipseitasplendescit,utpupillainipsumspeaanscontractissimaefficiatur。Nempeexhocessevidetur,curvisibilisspeciesexsoleprocedens,etperpupillamamplificatamintromissainretinam,amplioreminillasedemoccupet,majoremqueproindecreetsolisapparentiam,quamdumperconttactampupillameodemintromissacontendit(vid。Epist。IdeapparenteMagnitudinesolishumilisetsublimis,page6)。[9]ThissolutionofGassendusproceedsonafalseprinciple,viz。,thatthepupil’sbeingenlargedaugmentsthespeciesorimageonthefundoftheeye。 Thirdly,againstwhatissaidinsect。80,itisobjectedthatthemethingwhichissosmallasscarcetobediscernedbyamanmayappearlikeamountaintosomesmallinsect;fromwhichitfollowthattheminimumvisibileisnotequalinrespectofallcreatures。Ianswer,ifthisobjectionbesoundedtothebottomitwillbefoundtomeannomorethanthatthesameparticleofmatter,whichismarkedtoamanbyoneminimumvisibile,exhibitstoaninsectagreatnumberofminimavisibilia。 Butthisdoesnotprovethatoneminimumvisibileoftheinsectisnotequaltooneminimumvisibileoftheman。Thenotdistinguishingbetweenthemediateandimmediateobjectsofsightis,Isuspect,acauseofmisapprehensioninthismatter。 Someothermisinterpretationsanddifficultieshavebeenmade,butinthepointstheyreferto1haveendeavouredtobesoveryplainthatI knownothowtoexpressmyselfmoreclearly。AllIshalladdisthatiftheywhoarepleasedtocriticiseonmyessaywouldbutreadthewholeoverwithsomeattention,theymightbethebetterabletocomprehendmymeaningandconsequentlytojudgeofmymistakes。 Iaminformedthat,soonafterthefirsteditionofthistreatiseamansomewherenearLondonwasmadetosee,whohadbeenbornblind,andcontinuedsoforabouttwentyyears。Suchaonemaybesupposedaproperjudgetodecidehowfarsometenetslaiddowninseveralplacesoftheforegoingessayareagreeabletotruth,andifanycuriouspersonhaththeopportunityofmakingproperinterrogatoriestohimthereon,Ishouldgladlyseemynotionseitheramendedorconfirmedbyexperience。 Footnotes[1]SeewhatDecartesandothershavewrittenonthissubject。 [2]Par。I。Prop。31,Sect。9。 [3]MolyneuxDioptr。,Par。I。Prop。5。 [4]Phil。Trans。Num。187。p。314 [5]Numb。187。P。323 [6]Diopt。par。2。c。7。P。289。 [7]ClassicsEditor’snote:Thisappendixappearedinthe2ndeditiononly(1709)。 [8]Weapprehenddistance,moreover,throughasortofjointactivityoftheeyes。Forinthesamewayasourblindman,holdingtwosticksofindeterminatelength,AEandCE,andknowingonlythedistancebetweenhishands,AandC,togetherwiththesizeoftheanglesACEandCAE,canthencedeterminethepositionofEbyasortofinnategeometricalknowledgesharedbyallmen,so,whenbothoureyes,RSTandrst,arefocusedonX,thelengthofthelineSsandthesizeoftheanglesXSsandXsSletusknowthepositionofthepointX。Wecanalsodiscoverthatpositionbymeansofeitheroneofoureyesalone,bychangingitslocation。IfwekeeptheeyefixedonXandholditfirstatpointSandthenimmediatelyafterwardsatpoints,thatwillbeenoughforthelengthofthelineSsandthesizeoftheanglesXSsandXsStobepresenttogetherintheimaginationandthustoinformusofthedistanceofthepointX。Theydosoinvirtueofanactofthemindwhich,whileitmayseemtobeasimplejudgment,neverthelessincludeswithinitselfacertainreasoningprocesslikethatbywhichgeometerscalculateinaccessiblepositionsfromtwoseparategivenpoints。[FromDescartes’Dioptrics,VI,13。] [9]Thetruth,then,seemstobeasfollows:thereasonwhythesun,whenitislow,appearstotheeyetobelargerthanwhenithasclimbedhigherisbecause,aslongasitisneartothehorizon,the[interveningllayerofvapourisdeeper,andtheatomssodullthebrightnessofthesun’sraysthattheeyeblinksless。Forthepupilisasifshadedandisfarmoredilatedthanwhenthesunishighinthesky: thenathinnerlayerofvapourintervenesandthesunitselfshinessobrightlythat,inlookingtowardsit,thepupilclosesupandbecomeshighlycontracted。Doubtlessthisistheexplanationwhythevisiblespeciescomingfromthesun,whenitreachestheretinathroughadilatedpupil,occupiesalargerplaceonitandsocreatestheappearanceofalargersunthanwhenitstrikestheretinaafterenteringbythesameroutebutthroughacontractededpupil。